
Mind your Language(s)!
A discussion about languages and security

Olivier Levillain & Pierre Chifflier
ANSSI

Hackito Ergo Sum, 2015-10-29

Levillain & Chifflier Mind your Language(s)! HES 2015 1 / 59

Who are we?

Olivier Levillain (@pictyeye)

I 2007-2014 (DCSSI/ANSSI) in the labs (systems then network)

I since 2015 (ANSSI) head of the training center

I PhD student (since 2011!) working on SSL/TLS

I Participation to the languages studies since 2007

Pierre Chifflier (@pollux7)

I 2011-2015 (ANSSI) in the labs (systems)

I since 2015 (ANSSI) head of the research Lab for Exploration and
Detection (LED)

I Firewalls, IDS, UEFI, compilers, languages, . . .

Levillain & Chifflier Mind your Language(s)! HES 2015 2 / 59

ANSSI

ANSSI (French Network and Information Security Agency) has InfoSec
(and no Intelligence) missions:

I detect and early react to cyber attacks

I prevent threats by supporting the development of trusted products
and services

I provide reliable advice and support

I communicate on information security threats and the related means
of protection

These missions concern:

I governmental entities

I companies

I the general public

Levillain & Chifflier Mind your Language(s)! HES 2015 3 / 59

Why would we mind our languages?

In 2005, the DCSSI was asked whether Java could be used to develop
security products or not

The question is interesting, and it can be broadened:

I Are some languages better suited for security? On which criteria?

I Should we forbid, discourage, recommend or require the use of
particular languages or particular constructions?

I What would be a language dedicated to security like? What about its
compiler and its runtime?

It seems few people considered this question

Levillain & Chifflier Mind your Language(s)! HES 2015 4 / 59

Foreword

What this presentation is about

I the impact of the language on security properties is understudied

I it covers a broad spectrum of subjects

I since 2005, two studies: JavaSec and LaFoSec (available on
www.ssi.gouv.fr)

I each time, our partners did not at first share (or even understand) our
concerns

I the following examples do not aim at criticising particular languages

I no language was harmed during our work1

1They were already like that when we began.
Levillain & Chifflier Mind your Language(s)! HES 2015 5 / 59

www.ssi.gouv.fr

The five stages of this presentation

During and after this presentation, you might experience different
reactions

I denial: you can check yourself easily most of our examples

I anger: “Of course, language X first converts strings to ints before
comparing them. You moron...”

I bargaining: you might be trying to justify the unjustifiable

I depression: “why bother developing if all is lost?”

I acceptance: some languages/constructions are not your friends... you
must learn to know them and their quirks

Levillain & Chifflier Mind your Language(s)! HES 2015 6 / 59

Illustrations

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 7 / 59

Illustrations The elephant in the room

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 8 / 59

Illustrations The elephant in the room

[JavaScript] Some are more equal than others

JavaScript offers all the modern comfort. . .

if (0==’0’) print("Equal "); else print(" Different ");

switch (0)

{ case ’0’:print ("Equal");

default:print (" Different ");

}

Output is Equal, then Different

Levillain & Chifflier Mind your Language(s)! HES 2015 9 / 59

Illustrations The elephant in the room

[JavaScript] Some are more equal than others

JavaScript offers all the modern comfort. . .

if (0==’0’) print("Equal "); else print(" Different ");

switch (0)

{ case ’0’:print ("Equal");

default:print (" Different ");

}

Output is Equal, then Different

Levillain & Chifflier Mind your Language(s)! HES 2015 9 / 59

Illustrations The elephant in the room

[JavaScript] Reconversion

Should we prefer cast and overloading, or associativity and transitivity?

In JavaScript, ’0’==0 is true, as well as 0==’0.0’. However, ’0’==’0.0’ is
false; in other words, equality is not transitive

Another example: the + operator, which can be either the addition of
integers, or the concatenation of strings, but is associative in both cases

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Levillain & Chifflier Mind your Language(s)! HES 2015 10 / 59

Illustrations The elephant in the room

[JavaScript] Reconversion

Should we prefer cast and overloading, or associativity and transitivity?

In JavaScript, ’0’==0 is true, as well as 0==’0.0’. However, ’0’==’0.0’ is
false; in other words, equality is not transitive

Another example: the + operator, which can be either the addition of
integers, or the concatenation of strings, but is associative in both cases

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Levillain & Chifflier Mind your Language(s)! HES 2015 10 / 59

Illustrations The elephant in the room

[JavaScript] Reconversion

Should we prefer cast and overloading, or associativity and transitivity?

In JavaScript, ’0’==0 is true, as well as 0==’0.0’. However, ’0’==’0.0’ is
false; in other words, equality is not transitive

Another example: the + operator, which can be either the addition of
integers, or the concatenation of strings, but is associative in both cases

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Levillain & Chifflier Mind your Language(s)! HES 2015 10 / 59

Illustrations The elephant in the room

[JavaScript] Reconversion

Should we prefer cast and overloading, or associativity and transitivity?

In JavaScript, ’0’==0 is true, as well as 0==’0.0’. However, ’0’==’0.0’ is
false; in other words, equality is not transitive

Another example: the + operator, which can be either the addition of
integers, or the concatenation of strings, but is associative in both cases

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Levillain & Chifflier Mind your Language(s)! HES 2015 10 / 59

Illustrations The elephant in the room

[JavaScript] Enter the Matrix 1/4

Equal ==

Levillain & Chifflier Mind your Language(s)! HES 2015 11 / 59

Illustrations The elephant in the room

[JavaScript] Enter the Matrix 2/4

Lesser than or equal <=

Levillain & Chifflier Mind your Language(s)! HES 2015 12 / 59

Illustrations The elephant in the room

[JavaScript] Enter the Matrix 3/4

Lesser than <

Levillain & Chifflier Mind your Language(s)! HES 2015 13 / 59

Illustrations The elephant in the room

[JavaScript] Enter the Matrix 4/4

Greater than >

Levillain & Chifflier Mind your Language(s)! HES 2015 14 / 59

Illustrations The elephant in the room

Levillain & Chifflier Mind your Language(s)! HES 2015 15 / 59

Illustrations The elephant in the room

[JavaScript] M’enfin

Given that, crypto using JS (in the browser) really looks like a good idea:

I OpenPGP.js

I Google End-To-End

I keybase.io

I Heartbleed and javascript crypto

Levillain & Chifflier Mind your Language(s)! HES 2015 16 / 59

http://openpgpjs.org
https://github.com/google/end-to-end
https://keybase.io/
https://blog.whiteout.io/2014/04/13/heartbleed-and-javascript-crypto/

Illustrations Some revision of the classics

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 17 / 59

Illustrations Some revision of the classics

[Shell] True, False, FILE NOT FOUND 1/2

#!/ bin/bash

PIN =1234

echo -n "Please type your PIN code (4 digits): "

read -s PIN_TYPED; echo

if ["$PIN" -ne "$PIN_TYPED"]; then

echo "Invalid PIN code ."; exit 1

else

echo "Authentication OK"; exit 0

fi

A wrong PIN code will be rejected; yet if the user sends non-numeric
characters, access will be granted

Levillain & Chifflier Mind your Language(s)! HES 2015 18 / 59

Illustrations Some revision of the classics

[Shell] True, False, FILE NOT FOUND 1/2

#!/ bin/bash

PIN =1234

echo -n "Please type your PIN code (4 digits): "

read -s PIN_TYPED; echo

if ["$PIN" -ne "$PIN_TYPED"]; then

echo "Invalid PIN code ."; exit 1

else

echo "Authentication OK"; exit 0

fi

A wrong PIN code will be rejected; yet if the user sends non-numeric
characters, access will be granted

Levillain & Chifflier Mind your Language(s)! HES 2015 18 / 59

Illustrations Some revision of the classics

[C] True, False, FILE NOT FOUND 2/2

Focus on the Goto Fail vulnerability of GnuTLS (CVE-2014-0092), in
March 2014 (lwn.net)

But this bug is arguably much worse than Apple’s, as it has
allowed crafted certificates to evade validation check for all
versions of GnuTLS ever released since that project got started
in late 2000.[...]
The check_if_ca function is supposed to return true (any non-zero
value in C) or false (zero) depending on whether the issuer of the
certificate is a certificate authority (CA). A true return should
mean that the certificate passed muster and can be used further,
but the bug meant that error returns were misinterpreted as
certificate validations.

By the way, a similar bug was found in OpenSSL... in 2008
(CVE-2008-5077).

Levillain & Chifflier Mind your Language(s)! HES 2015 19 / 59

lwn.net

Illustrations Some revision of the classics

[C] True, False, FILE NOT FOUND 2/2

Focus on the Goto Fail vulnerability of GnuTLS (CVE-2014-0092), in
March 2014 (lwn.net)

But this bug is arguably much worse than Apple’s, as it has
allowed crafted certificates to evade validation check for all
versions of GnuTLS ever released since that project got started
in late 2000.[...]
The check_if_ca function is supposed to return true (any non-zero
value in C) or false (zero) depending on whether the issuer of the
certificate is a certificate authority (CA). A true return should
mean that the certificate passed muster and can be used further,
but the bug meant that error returns were misinterpreted as
certificate validations.

By the way, a similar bug was found in OpenSSL... in 2008
(CVE-2008-5077).

Levillain & Chifflier Mind your Language(s)! HES 2015 19 / 59

lwn.net

Illustrations Some revision of the classics

[C] Echo-logy 1/2

Levillain & Chifflier Mind your Language(s)! HES 2015 20 / 59

Illustrations Some revision of the classics

[C] Echo-logy 2/2

The Heartbleed vulnerability (CVE-2014-160) was disclosed in April 2014

Concretely, about half of https servers of the world were impacted, with
potential remote compromission of

I private keys

I passwords

I any other information present in the memory of the process. . .

Using a cryptographic framework has added a vulnerability that was not
present, and consequences go way beyond the perimeter of the framework.

The cause was a simple missing test for checking bounds, in the code of a
non-critical function of the Ssl/Tls protocol.

Levillain & Chifflier Mind your Language(s)! HES 2015 21 / 59

Illustrations Some revision of the classics

[C] Epic Apple’s Goto Fail

Yet another bug in a cryptographic library, revealed in 2014

/* Extract from Apple ’s sslKeyExchange.c */

if ((err=SSLHashSHA1.update (&hashCtx ,& serverRandom))!=0)

goto fail;

if ((err=SSLHashSHA1.update (&hashCtx ,& signedParams))!=0)

goto fail;

goto fail;

if ((err=SSLHashSHA1.final (&hashCtx ,& hashOut))!=0)

goto fail;

Syntax doesn’t help, but the compiler doesn’t seem concerned about
signaling obviously dead code. . .

Levillain & Chifflier Mind your Language(s)! HES 2015 22 / 59

Illustrations Some revision of the classics

[C] Unconditional compromission

A (proposed) Linux kernel modification2

+ if ((options ==(__WCLONE|__WALL)) && (current ->uid =0))

+ retval = -EINVAL;

Obvious trap : when the test of options is true, current->uid becomes 0 (i.e.
the process gains root privileges)

The attack is based on the confusion between = and ==, but also on the
fact that the affectation returns a value, that C is weakly typed 3 so the
integer will be evaluated as a boolean value, that evaluation is lazy, etc.

2Cf. lwn.net/Articles/57135/
3To a C programmer strong typing means pressing the keys harder.

Levillain & Chifflier Mind your Language(s)! HES 2015 23 / 59

lwn.net/Articles/57135/

Illustrations Some revision of the classics

[C] Unconditional compromission

A (proposed) Linux kernel modification2

+ if ((options ==(__WCLONE|__WALL)) && (current ->uid =0))

+ retval = -EINVAL;

Obvious trap : when the test of options is true, current->uid becomes 0 (i.e.
the process gains root privileges)

The attack is based on the confusion between = and ==, but also on the
fact that the affectation returns a value, that C is weakly typed 3 so the
integer will be evaluated as a boolean value, that evaluation is lazy, etc.

2Cf. lwn.net/Articles/57135/
3To a C programmer strong typing means pressing the keys harder.

Levillain & Chifflier Mind your Language(s)! HES 2015 23 / 59

lwn.net/Articles/57135/

Illustrations Some revision of the classics

[Java] Varying equality

At least, with physical equality, we know what to expect. . . except in case
of subtle interactions with innovating standard libraries

Integer a1=42;

Integer a2=42;

if (a1==a2) System.out.println ("a1 == a2");

Integer b1 =1000;

Integer b2 =1000;

if (b1==b2) System.out.println ("b1 == b2");

The output is a1==a2 (nothing for the second test).
Who wants to guess why?

Levillain & Chifflier Mind your Language(s)! HES 2015 24 / 59

Illustrations Some revision of the classics

[Java] Varying equality

At least, with physical equality, we know what to expect. . . except in case
of subtle interactions with innovating standard libraries

Integer a1=42;

Integer a2=42;

if (a1==a2) System.out.println ("a1 == a2");

Integer b1 =1000;

Integer b2 =1000;

if (b1==b2) System.out.println ("b1 == b2");

The output is a1==a2 (nothing for the second test).
Who wants to guess why?

Levillain & Chifflier Mind your Language(s)! HES 2015 24 / 59

Illustrations Some revision of the classics

[Java] Utf? Wtf!

Some compilers are Utf-8-compatible

public class Preprocess {

public static void ma\u0069n (String [] args) {

if (false==true)

{ //\ u000a\u007d\u007b

System.out.println ("Bad things happen !");

}

}

}

Levillain & Chifflier Mind your Language(s)! HES 2015 25 / 59

Illustrations Some revision of the classics

[Java] Utf? Wtf!

Some compilers are Utf-8-compatible

public class Preprocess {

public static void ma\u0069n (String [] args) {

if (false==true)

{ //\ u000a\u007d\u007b

System.out.println ("Bad things happen !");

}

}

}

The output is obviously Bad thing happens: the source code seems to be
pre-processed before the compilation

Levillain & Chifflier Mind your Language(s)! HES 2015 25 / 59

Illustrations

L’instant PHP

Levillain & Chifflier Mind your Language(s)! HES 2015 26 / 59

Illustrations

[Php] Icônocast

$x="2d8"; print($x+1); print ("\n");

$x="2d8"; print (++$x."\n"); print (++$x."\n"); print (++$x."\n");

The output of the first line is 3 (integer)

Output of the second line is 2d9 (string), 2e0 (string) then 3 (float)

Levillain & Chifflier Mind your Language(s)! HES 2015 27 / 59

Illustrations

[Php] Icônocast

$x="2d8"; print($x+1); print ("\n");

$x="2d8"; print (++$x."\n"); print (++$x."\n"); print (++$x."\n");

The output of the first line is 3 (integer)

Output of the second line is 2d9 (string), 2e0 (string) then 3 (float)

Levillain & Chifflier Mind your Language(s)! HES 2015 27 / 59

Illustrations

[Php] Icônocast

$x="2d8"; print($x+1); print ("\n");

$x="2d8"; print (++$x."\n"); print (++$x."\n"); print (++$x."\n");

The output of the first line is 3 (integer)

Output of the second line is 2d9 (string), 2e0 (string) then 3 (float)

Levillain & Chifflier Mind your Language(s)! HES 2015 27 / 59

Illustrations What about your favorite script language?

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 28 / 59

Illustrations What about your favorite script language?

[Perl] The Perl Jam (31c3) 1/3

Let us consider a simple SQL request in a web application:

req = ’select * from users where username=’ .

$dbh ->quote ($cgi ->param(’user ’));

http://index.cgi?user=user’

With such a request, the quote is properly escaped, as expected, since
$cgi->param(’user’) is the string "user’"

http://index.cgi?user=’or’’=’&user=3 ?

What about this one, where $cgi->param(’user’) becomes an array
with two values?

Levillain & Chifflier Mind your Language(s)! HES 2015 29 / 59

http://index.cgi?user=user'
http://index.cgi?user=' or ''='&user=3

Illustrations What about your favorite script language?

[Perl] The Perl Jam (31c3) 1/3

Let us consider a simple SQL request in a web application:

req = ’select * from users where username=’ .

$dbh ->quote ($cgi ->param(’user ’));

http://index.cgi?user=user’

With such a request, the quote is properly escaped, as expected, since
$cgi->param(’user’) is the string "user’"

http://index.cgi?user=’or’’=’&user=3 ?

What about this one, where $cgi->param(’user’) becomes an array
with two values?

Levillain & Chifflier Mind your Language(s)! HES 2015 29 / 59

http://index.cgi?user=user'
http://index.cgi?user=' or ''='&user=3

Illustrations What about your favorite script language?

[Perl] The Perl Jam (31c3) 2/3

Let’s look at the quote source code:

sub quote ($$; $) {

my ($self , $str , type) = @_;

...

defined $type && ($type == DBI:: SQL_NUMERIC () ...)

and return $str;

... }

I When the user parameter is repeated, the framework produces an
array instead of a litteral string

I In the function, the array is seen as two arguments, instead of one!

I Cherry on the cake, SQL NUMERIC (3) as a second arg allows to
bypass the security mechanism

Levillain & Chifflier Mind your Language(s)! HES 2015 30 / 59

Illustrations What about your favorite script language?

[Perl] The Perl Jam (31c3) 2/3

Let’s look at the quote source code:

sub quote ($$; $) {

my ($self , $str , type) = @_;

...

defined $type && ($type == DBI:: SQL_NUMERIC () ...)

and return $str;

... }

I When the user parameter is repeated, the framework produces an
array instead of a litteral string

I In the function, the array is seen as two arguments, instead of one!

I Cherry on the cake, SQL NUMERIC (3) as a second arg allows to
bypass the security mechanism

Levillain & Chifflier Mind your Language(s)! HES 2015 30 / 59

Illustrations What about your favorite script language?

[Perl] The Perl Jam (31c3) 2/3

Let’s look at the quote source code:

sub quote ($$; $) {

my ($self , $str , type) = @_;

...

defined $type && ($type == DBI:: SQL_NUMERIC () ...)

and return $str;

... }

I When the user parameter is repeated, the framework produces an
array instead of a litteral string

I In the function, the array is seen as two arguments, instead of one!

I Cherry on the cake, SQL NUMERIC (3) as a second arg allows to
bypass the security mechanism

Levillain & Chifflier Mind your Language(s)! HES 2015 30 / 59

Illustrations What about your favorite script language?

[Perl] The Perl Jam (31c3) 3/3

Type confusion within the language is bad, and lead to real security issues.

A solution would be to check the type of the provided argument

But should we really expect developers to jump through hoops, simply to
access function arguments?

Levillain & Chifflier Mind your Language(s)! HES 2015 31 / 59

Illustrations What about your favorite script language?

[Python] Locality fun

Python offers syntactic constructions equivalent to the classical map

algorithm on lists, and list comprehensions

>>> l = [s+1 for s in [1,2,3]]

>>> l

[2, 3, 4]

What happens then if we type s into the prompt ?

Unless using the latest Python 3 interpreter, s is 3, while the variable s

should have been local (bound), as in the following snippet:

>>> l = map (lambda s : s+1, [1,2,3])

Levillain & Chifflier Mind your Language(s)! HES 2015 32 / 59

Illustrations What about your favorite script language?

[Python] Locality fun

Python offers syntactic constructions equivalent to the classical map

algorithm on lists, and list comprehensions

>>> l = [s+1 for s in [1,2,3]]

>>> l

[2, 3, 4]

What happens then if we type s into the prompt ?

Unless using the latest Python 3 interpreter, s is 3, while the variable s

should have been local (bound), as in the following snippet:

>>> l = map (lambda s : s+1, [1,2,3])

Levillain & Chifflier Mind your Language(s)! HES 2015 32 / 59

Illustrations What about your favorite script language?

[Python] A false midnight (lwn.net/Articles/590299/)

Python allows to use almost anything as a condition in an if statement

def check_time (start_time , end_time):

time = datetime.now().time()

if start_time and end_time:

return (start_time <= time) and (time <= end_time)

else:

return True # no bounds were specified

What should return check time (time(23,0,0), time (0, 0, 0))?

Since midnight is considered to be false, it’s always True

Levillain & Chifflier Mind your Language(s)! HES 2015 33 / 59

lwn.net/Articles/590299/

Illustrations What about your favorite script language?

[Python] A false midnight (lwn.net/Articles/590299/)

Python allows to use almost anything as a condition in an if statement

def check_time (start_time , end_time):

time = datetime.now().time()

if start_time and end_time:

return (start_time <= time) and (time <= end_time)

else:

return True # no bounds were specified

What should return check time (time(23,0,0), time (0, 0, 0))?

Since midnight is considered to be false, it’s always True

Levillain & Chifflier Mind your Language(s)! HES 2015 33 / 59

lwn.net/Articles/590299/

Illustrations What about your favorite script language?

[Python] tuple-ware

>>> foo = ([],)

>>> foo[0] += [1]

TypeError: ’tuple ’ object does not support item assignment

>>> foo

<<< ([1],)

Checking for exceptions before doing the action may be an interesting
behavior

Levillain & Chifflier Mind your Language(s)! HES 2015 34 / 59

Illustrations What about your favorite script language?

[Ruby/Shell] This is not a pipe

In Ruby, Kernel.open and File.open both allow to open a file, and almost
have the same behavior. . . The first (which is called by open) also allows to
get the output of a Shell command as a file

> open ("|ls").each { |x| p x }

"beginend.rb\n"

"beginend.rb~\n"

...

On which criteria? The fact that the file name starts with the | character

Levillain & Chifflier Mind your Language(s)! HES 2015 35 / 59

Illustrations

L’instant PHP

Levillain & Chifflier Mind your Language(s)! HES 2015 36 / 59

Illustrations

[Php] Get a fix

Extract from jQuery File Upload Plugin PHP Class

// Fix for overflowing signed 32 bit integers ,

// works for sizes up to 2^32-1 bytes (4 GiB - 1):

protected function fix_integer_overflow($size) {

if ($size < 0) {

$size += 2.0 * (PHP_INT_MAX + 1);

}

return $size;

}

return $this ->fix_integer_overflow(filesize($file_path));

Levillain & Chifflier Mind your Language(s)! HES 2015 37 / 59

Illustrations Qui aime bien châtie bien

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 38 / 59

Illustrations Qui aime bien châtie bien

[OCaml] Mutatis mutandis 1/3

In OCaml, code is static and strings are mutable; but what about strings
defined in the code ?

let check c =

if c then "OK" else "KO";;

let f=check false in

f.[0]<-’O’; f.[1]<-’K’;;

check true;;

check false;;

Both applications of check return "OK"

Levillain & Chifflier Mind your Language(s)! HES 2015 39 / 59

Illustrations Qui aime bien châtie bien

[OCaml] Mutatis mutandis 1/3

In OCaml, code is static and strings are mutable; but what about strings
defined in the code ?

let check c =

if c then "OK" else "KO";;

let f=check false in

f.[0]<-’O’; f.[1]<-’K’;;

check true;;

check false;;

Both applications of check return "OK"

Levillain & Chifflier Mind your Language(s)! HES 2015 39 / 59

Illustrations Qui aime bien châtie bien

[OCaml] Mutatis mutandis 2/3

Previous example is not a redefinition of the alert function, but a simple
simple side effect; to be convinced, here is the result of this, applied to a
function of the standard library

let t=string_of_bool false in

t.[0]<-’t’; t.[1]<-’r’; t.[2]<-’u’; t.[3]<-’e’; t.[4]<-’ ’;

Printf.printf "1<>1 is %b\n" (1<>1);;

Output is 1<>1 is true

Levillain & Chifflier Mind your Language(s)! HES 2015 40 / 59

Illustrations Qui aime bien châtie bien

[OCaml] Mutatis mutandis 3/3

Other interesting functions are impacted by such string manipulations

Exceptions

I Many standard libraries throw Failure exceptions containing a
constant string

I A common usage is to pattern match on this very string...

I An attacker could thus change the control flow

Character escape functions

I Char.escaped is a function escaping some characters

I When called with a quote character, it returns the “\’” string

I So you can defeat the whole purpose of the mechanism with a
one-liner

Levillain & Chifflier Mind your Language(s)! HES 2015 41 / 59

Illustrations Qui aime bien châtie bien

Levillain & Chifflier Mind your Language(s)! HES 2015 42 / 59

Illustrations Qui aime bien châtie bien

[OCaml] < yet strong 1/2

OCaml offers different encapsulation mechanisms4

module type Crypto = sig val id:int end;;

module C : Crypto =

struct

let id=Random.self_init (); Random.int 8192

let key=Random.self_init (); Random.int 8192

end;;

It is a sealed box; the id value is visible while the key is hidden
C.id returns - : int = 2570

C.key throws Error: Unbound value C.key

4We consider here modules, given that the OCaml objects offer weaker guarantees
Levillain & Chifflier Mind your Language(s)! HES 2015 43 / 59

Illustrations Qui aime bien châtie bien

[OCaml] < yet strong 2/2

But this encapsulation can be bypassed (in earlier versions)

let rec oracle o1 o2 =

let o = (o1 + o2)/2 in

let module O = struct let id=C.id let key=o end in

if (module O:Crypto)>(module C:Crypto)

then oracle o1 o

else (if (module O:Crypto) <(module C:Crypto)

then oracle o o2

else o);;

oracle 0 8192;;

This code would return the key value at runtime; we could not open the
box, but we could use a weighing scale...

Levillain & Chifflier Mind your Language(s)! HES 2015 44 / 59

Illustrations Qui aime bien châtie bien

[OCaml] An early off-by-one

On a 32-bit machine, as many languages, OCaml does not handle integer
overflow

let x = 0x3fff_ffff ;;

val x : int = 1073741823

x+1;;

- : int = -1073741824

This is regrettable in such a cool language... but wait !

This x was 230 − 1 and not 231 − 1!

Indeed, int represents a signed 31-bit integer in OCaml!

Levillain & Chifflier Mind your Language(s)! HES 2015 45 / 59

Illustrations Qui aime bien châtie bien

[OCaml] An early off-by-one

On a 32-bit machine, as many languages, OCaml does not handle integer
overflow

let x = 0x3fff_ffff ;;

val x : int = 1073741823

x+1;;

- : int = -1073741824

This is regrettable in such a cool language... but wait !

This x was 230 − 1 and not 231 − 1!

Indeed, int represents a signed 31-bit integer in OCaml!

Levillain & Chifflier Mind your Language(s)! HES 2015 45 / 59

Illustrations Qui aime bien châtie bien

[OCaml] An early off-by-one

On a 32-bit machine, as many languages, OCaml does not handle integer
overflow

let x = 0x3fff_ffff ;;

val x : int = 1073741823

x+1;;

- : int = -1073741824

This is regrettable in such a cool language... but wait !

This x was 230 − 1 and not 231 − 1!

Indeed, int represents a signed 31-bit integer in OCaml!

Levillain & Chifflier Mind your Language(s)! HES 2015 45 / 59

Illustrations

L’instant PHP

Levillain & Chifflier Mind your Language(s)! HES 2015 46 / 59

Illustrations

[Php] Internet et les vidéos de sha

What is the relation with security?

$h1= md5 (’QNKCDZO ’);

$h2= md5 (’240610708 ’);

$h3= md5 (’A169818202 ’);

$h4= md5 (’aaaaaaaaaaaumdozb ’);

$h5= sha1(’badthingsrealmlavznik ’);

Compared using ==, which one are equal?

A. None, of course C. h1, h3 and h4

B. h3 and h5 D. Answer D

Levillain & Chifflier Mind your Language(s)! HES 2015 47 / 59

Illustrations

[Php] Internet et les vidéos de sha

Answer D:

All of them!
In Php:

’0e830400451993494058024219903391 ’ ==

’0e462097431906509019562988736854 ’ ==

’0e590126417109547563244339779435 ’ ==

’000 e9946396666667072804792263424 ’ ==

’00 e6350478108627283429100248932178194894 ’

Simple Machines Forum <= 2.0.3 Admin Password Reset (2013)5

if (empty($_POST[’code ’]) ||

substr($realCode , 0, 10) != substr(md5($_POST[’code ’]), 0, 10))

5and phpBB in 2011 . . .
Levillain & Chifflier Mind your Language(s)! HES 2015 48 / 59

Illustrations

[Php] Internet et les vidéos de sha

Answer D:

All of them!
In Php:

’0e830400451993494058024219903391 ’ ==

’0e462097431906509019562988736854 ’ ==

’0e590126417109547563244339779435 ’ ==

’000 e9946396666667072804792263424 ’ ==

’00 e6350478108627283429100248932178194894 ’

Simple Machines Forum <= 2.0.3 Admin Password Reset (2013)5

if (empty($_POST[’code ’]) ||

substr($realCode , 0, 10) != substr(md5($_POST[’code ’]), 0, 10))

5and phpBB in 2011 . . .
Levillain & Chifflier Mind your Language(s)! HES 2015 48 / 59

Beyond the code

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 49 / 59

Beyond the code About specifications

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 50 / 59

Beyond the code About specifications

[Java] Clone Wars

Extract of the official specification of the Java language, regarding the
clone method of the Object class:

The general intent is that, for any object x, the expression:
x.clone()!= x will be true, and that the expression:
x.clone().getClass()== x.getClass() will be true, but these are not
absolute requirements. While it is typically the case that:
x.clone().equals(x) will be true, this is not an absolute
requirement.

The specification of the serialization operations (writeObject and readObject)
is also quite puzzling

Levillain & Chifflier Mind your Language(s)! HES 2015 51 / 59

Beyond the code Tools/Runtime?

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 52 / 59

Beyond the code Tools/Runtime?

[C] Cast-a-niet

The compiler could help you

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

char *hello = "hello , world ";

hello [0] = ’Y’;

hello [1] = ’o’;

return 0;

}

Program output is Segmentation fault. Error is predictable (cast from a
constant byte array from RO section to a mutable array), but even with
-Wall -Wextra there is no warning.

Levillain & Chifflier Mind your Language(s)! HES 2015 53 / 59

Beyond the code Tools/Runtime?

[C] Cast-a-niet

The compiler could help you

#include <stdlib.h>

#include <stdio.h>

int main(void)

{

char *hello = "hello , world ";

hello [0] = ’Y’;

hello [1] = ’o’;

return 0;

}

Program output is Segmentation fault. Error is predictable (cast from a
constant byte array from RO section to a mutable array), but even with
-Wall -Wextra there is no warning.

Levillain & Chifflier Mind your Language(s)! HES 2015 53 / 59

Conclusion

Outline

Illustrations
The elephant in the room
Some revision of the classics
What about your favorite script language?
Qui aime bien châtie bien

Beyond the code
About specifications
Tools/Runtime?

Conclusion

Levillain & Chifflier Mind your Language(s)! HES 2015 54 / 59

Conclusion

What now? (1/2)

How we choose a language:

I generally, we use what we know

I otherwise it’s performance

How we should choose a language:

I what you want to do: parsing, low-level programing, GUI, . . .

I ideally: compromise between language security properties,
knowledge, and performance

I performance cannot justify everything!

Security cannot rely on developers only

Levillain & Chifflier Mind your Language(s)! HES 2015 55 / 59

Conclusion

What now? (1/2)

How we choose a language:

I generally, we use what we know

I otherwise it’s performance

How we should choose a language:

I what you want to do: parsing, low-level programing, GUI, . . .

I ideally: compromise between language security properties,
knowledge, and performance

I performance cannot justify everything!

Security cannot rely on developers only

Levillain & Chifflier Mind your Language(s)! HES 2015 55 / 59

Conclusion

What now? (2/2)

Tools can help you

I always ask for all warnings
(-Wall -Wextra -Wwrite-strings -Wconversions ...)

I never do quick ’n dirty

I more time thinking, less time debugging

Good habits can help you

I always test results

I use whitelists, not blacklists

I KISS

I do not use all features of a language, nor write ascii art (Ioccc
contest / most Rust programs)

Levillain & Chifflier Mind your Language(s)! HES 2015 56 / 59

Conclusion

A Word on Polyglots

Idea: use multiple languages in a project

Pros

I write parsers in a safe language

I write low-level and networking stuff in an efficient language

I better architecture

Cons

I more complex

I serialization is dangerous

I more problems: ctypes is even more dangerous

I now you have the problems of several languages!

Levillain & Chifflier Mind your Language(s)! HES 2015 57 / 59

Conclusion

Lessons learned

I Programming languages can impact software security

I There is room for improvement in them

I We could benefit from more research and tools

I Writing secure software requires a broad vision in many aspects of
computer science

I Teaching should take more those aspects into account

I Our job is safe!

Levillain & Chifflier Mind your Language(s)! HES 2015 58 / 59

Conclusion

Questions?

Thank you for your attention

first.last@ssi.gouv.fr

Levillain & Chifflier Mind your Language(s)! HES 2015 59 / 59

	Illustrations
	The elephant in the room
	Some revision of the classics
	What about your favorite script language?
	Qui aime bien châtie bien

	Beyond the code
	About specifications
	Tools/Runtime?

	Conclusion

