
Implementation Flaws in TLS Stacks: Lessons Learned
and Study of TLS 1.3 Benefits

Olivier Levillain

Télécom SudParis

November 5th 2020



TLS in a nutshell



Protocol description

Client Server
ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application Data

SSL/TLS is pervasive today
I HTTPS (many use cases)
I A generic method to secure

protocols
I SSL VPN, EAP TLS...

Security goals
I Server (and optionnaly

client) authentication
I Data confidentiality and

integrity protection
I Anti-replay

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 3 / 28



A history of vulnerabilities
Since its inception in 1995 as SSL, the protocol has known many
problems, especially since 2011

I 2011: BEAST
I 2012: CRIME
I 2013: Lucky 13
I 2014: POODLE
I 2014: Heartbleed
I 2014: 3SHAKE
I 2015: FREAK
I 2015: LogJam
I 2016: DROWN

To overcome them, the IETF TLS WG started working on TLS 1.3 in 2014

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 4 / 28



A history of vulnerabilities
Since its inception in 1995 as SSL, the protocol has known many
problems, especially since 2011
I 2011: BEAST
I 2012: CRIME
I 2013: Lucky 13
I 2014: POODLE
I 2014: Heartbleed
I 2014: 3SHAKE
I 2015: FREAK
I 2015: LogJam
I 2016: DROWN

To overcome them, the IETF TLS WG started working on TLS 1.3 in 2014

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 4 / 28



A history of vulnerabilities
Since its inception in 1995 as SSL, the protocol has known many
problems, especially since 2011
I 2011: BEAST
I 2012: CRIME
I 2013: Lucky 13
I 2014: POODLE
I 2014: Heartbleed
I 2014: 3SHAKE
I 2015: FREAK
I 2015: LogJam
I 2016: DROWN

To overcome them, the IETF TLS WG started working on TLS 1.3 in 2014

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 4 / 28



The TLS 1.3 revolution
TLS 1.3, standardized in RFC 8446, brings many answers to the
aforementionned problems

I most obsolete cryptographic constructions were removed
I RSA PKCS#1 v1.5
I MD5, SHA1, RC4
I the CBC mode

I the handshake phase is more secure
I the forward secrecy is always guaranteed
I only proper selected groups can be used in the key exchange

I the privacy has been enhanced
I part of the handhsake is encrypted
I for encrypted messages, the type is masked and the length can be

padded

What about TLS implementations?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 5 / 28



The TLS 1.3 revolution
TLS 1.3, standardized in RFC 8446, brings many answers to the
aforementionned problems
I most obsolete cryptographic constructions were removed

I RSA PKCS#1 v1.5
I MD5, SHA1, RC4
I the CBC mode

I the handshake phase is more secure
I the forward secrecy is always guaranteed
I only proper selected groups can be used in the key exchange

I the privacy has been enhanced
I part of the handhsake is encrypted
I for encrypted messages, the type is masked and the length can be

padded

What about TLS implementations?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 5 / 28



The TLS 1.3 revolution
TLS 1.3, standardized in RFC 8446, brings many answers to the
aforementionned problems
I most obsolete cryptographic constructions were removed

I RSA PKCS#1 v1.5
I MD5, SHA1, RC4
I the CBC mode

I the handshake phase is more secure
I the forward secrecy is always guaranteed
I only proper selected groups can be used in the key exchange

I the privacy has been enhanced
I part of the handhsake is encrypted
I for encrypted messages, the type is masked and the length can be

padded

What about TLS implementations?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 5 / 28



The TLS 1.3 revolution
TLS 1.3, standardized in RFC 8446, brings many answers to the
aforementionned problems
I most obsolete cryptographic constructions were removed

I RSA PKCS#1 v1.5
I MD5, SHA1, RC4
I the CBC mode

I the handshake phase is more secure
I the forward secrecy is always guaranteed
I only proper selected groups can be used in the key exchange

I the privacy has been enhanced
I part of the handhsake is encrypted
I for encrypted messages, the type is masked and the length can be

padded

What about TLS implementations?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 5 / 28



The TLS 1.3 revolution
TLS 1.3, standardized in RFC 8446, brings many answers to the
aforementionned problems
I most obsolete cryptographic constructions were removed

I RSA PKCS#1 v1.5
I MD5, SHA1, RC4
I the CBC mode

I the handshake phase is more secure
I the forward secrecy is always guaranteed
I only proper selected groups can be used in the key exchange

I the privacy has been enhanced
I part of the handhsake is encrypted
I for encrypted messages, the type is masked and the length can be

padded

What about TLS implementations?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 5 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?

A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA

(0x002f)
B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)
C an alert
D something else (RC4_MD5)

(0x0005)

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert

D something else (RC4_MD5)

(0x0005)

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA

(0x002f)

B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

Actually, it is easy to explain

I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA (0x002f)
B ECDH-ECDSA-AES128-SHA

(0xc005)

C an alert
D something else (RC4_MD5)

(0x0005)

Actually, it is easy to explain
I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00

I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA (0x002f)
B ECDH-ECDSA-AES128-SHA (0xc005)
C an alert
D something else (RC4_MD5) (0x0005)

Actually, it is easy to explain
I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00

I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



A word on existing SSL/TLS stacks

What should a client expect when they propose the following ciphersuites:
AES128-SHA et ECDH-ECDSA-AES128-SHA?
A AES128-SHA (0x002f)
B ECDH-ECDSA-AES128-SHA (0xc005)
C an alert
D something else (RC4_MD5) (0x0005)

Actually, it is easy to explain
I a ciphersuite is represented by a 16-bit integer
I for almost a decade, all suites had their first byte equal to 00
I why bother to inspect this byte?

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 6 / 28



Implementation Flaws
Common programming errors



Common programming errors in TLS

Selection of classical programming errors in SSL/TLS stacks

I CVE-2002-0862 (and CVE-2011-0228): BasicConstraints checks
(missing check) in Windows (and iOS)

I CVE-2014-1266: Apple’s goto fail (dead code)
I CVE-2014-0092: GnuTLS’ goto fail (logic error)
I CVE-2014-0160: OpenSSL’s Heartbleed (buffer overread)
I CVE-2014-6321: WinShock (buffer overflow) in Windows

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 8 / 28



Common programming errors in TLS

Selection of classical programming errors in SSL/TLS stacks
I CVE-2002-0862 (and CVE-2011-0228): BasicConstraints checks

(missing check) in Windows (and iOS)

I CVE-2014-1266: Apple’s goto fail (dead code)
I CVE-2014-0092: GnuTLS’ goto fail (logic error)
I CVE-2014-0160: OpenSSL’s Heartbleed (buffer overread)
I CVE-2014-6321: WinShock (buffer overflow) in Windows

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 8 / 28



Common programming errors in TLS

Selection of classical programming errors in SSL/TLS stacks
I CVE-2002-0862 (and CVE-2011-0228): BasicConstraints checks

(missing check) in Windows (and iOS)
I CVE-2014-1266: Apple’s goto fail (dead code)

I CVE-2014-0092: GnuTLS’ goto fail (logic error)
I CVE-2014-0160: OpenSSL’s Heartbleed (buffer overread)
I CVE-2014-6321: WinShock (buffer overflow) in Windows

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 8 / 28



Common programming errors in TLS

Selection of classical programming errors in SSL/TLS stacks
I CVE-2002-0862 (and CVE-2011-0228): BasicConstraints checks

(missing check) in Windows (and iOS)
I CVE-2014-1266: Apple’s goto fail (dead code)
I CVE-2014-0092: GnuTLS’ goto fail (logic error)

I CVE-2014-0160: OpenSSL’s Heartbleed (buffer overread)
I CVE-2014-6321: WinShock (buffer overflow) in Windows

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 8 / 28



Common programming errors in TLS

Selection of classical programming errors in SSL/TLS stacks
I CVE-2002-0862 (and CVE-2011-0228): BasicConstraints checks

(missing check) in Windows (and iOS)
I CVE-2014-1266: Apple’s goto fail (dead code)
I CVE-2014-0092: GnuTLS’ goto fail (logic error)
I CVE-2014-0160: OpenSSL’s Heartbleed (buffer overread)

I CVE-2014-6321: WinShock (buffer overflow) in Windows

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 8 / 28



Common programming errors in TLS

Selection of classical programming errors in SSL/TLS stacks
I CVE-2002-0862 (and CVE-2011-0228): BasicConstraints checks

(missing check) in Windows (and iOS)
I CVE-2014-1266: Apple’s goto fail (dead code)
I CVE-2014-0092: GnuTLS’ goto fail (logic error)
I CVE-2014-0160: OpenSSL’s Heartbleed (buffer overread)
I CVE-2014-6321: WinShock (buffer overflow) in Windows

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 8 / 28



Focus on GnuTLS’ goto fail (CVE-2014-0092)
The bug allows an attacker to circumvent client-side checks regarding
server certificates (source: lwn.net, March 2014)

The check_if_ca function is supposed to return true (any non-
zero value in C) or false (zero) depending on whether the issuer
of the certificate is a certificate authority (CA). A true return
should mean that the certificate passed muster and can be used
further, but the bug meant that error returns were misinterpreted
as certificate validations.

A similar bug was found in OpenSSL... in 2008 (CVE-2008-5077)!

The fix replaces a if (!i) with a if (i<=0), where i is returned
by a function checking a certificate which was interpreted as a
boolean without taking into account other values corresponding
to error codes

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 9 / 28

lwn.net


Focus on GnuTLS’ goto fail (CVE-2014-0092)
The bug allows an attacker to circumvent client-side checks regarding
server certificates (source: lwn.net, March 2014)

The check_if_ca function is supposed to return true (any non-
zero value in C) or false (zero) depending on whether the issuer
of the certificate is a certificate authority (CA). A true return
should mean that the certificate passed muster and can be used
further, but the bug meant that error returns were misinterpreted
as certificate validations.

A similar bug was found in OpenSSL... in 2008 (CVE-2008-5077)!

The fix replaces a if (!i) with a if (i<=0), where i is returned
by a function checking a certificate which was interpreted as a
boolean without taking into account other values corresponding
to error codes

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 9 / 28

lwn.net


Lessons learned
Observations
I all major TLS stacks have experienced problems
I sometimes, similar bugs have resurfaced in different stacks several

years apart
I we should not put all the blame on the developers

Possible solutions
I better test suites (including negative checks, ideally shared between

implementations)
I better programming languages and tools

What about TLS 1.3?
I with regards to these particular bugs, not much...

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 10 / 28



Lessons learned
Observations
I all major TLS stacks have experienced problems
I sometimes, similar bugs have resurfaced in different stacks several

years apart
I we should not put all the blame on the developers

Possible solutions
I better test suites (including negative checks, ideally shared between

implementations)
I better programming languages and tools

What about TLS 1.3?
I with regards to these particular bugs, not much...

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 10 / 28



Lessons learned
Observations
I all major TLS stacks have experienced problems
I sometimes, similar bugs have resurfaced in different stacks several

years apart
I we should not put all the blame on the developers

Possible solutions
I better test suites (including negative checks, ideally shared between

implementations)
I better programming languages and tools

What about TLS 1.3?
I with regards to these particular bugs, not much...

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 10 / 28



Implementation Flaws
Parsing bugs



Parsing bugs

Parsing complex structures can trigger memory management issues in
low-level languages such as C

Beyond them, parsing errors can lead to confusion on the interpreted value

I CVE-2009-2408: Null characters in Distinguished Names (ASN.1
Strings) in Firefox (and others)

I CVE-2014-1568: NSS/CyaSSL/PolarSSL Signature Forgery (ASN.1
Length Encodings)

I CVE-2014-3511: OpenSSL downgrade attack (Record splitting)
I 2013: the Alert attack (Record boundaries) in OpenSSL (and others)
I CVE-2014-0160: OpenSSL’s Heartbleed (Record boundaries)

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 12 / 28



Parsing bugs

Parsing complex structures can trigger memory management issues in
low-level languages such as C

Beyond them, parsing errors can lead to confusion on the interpreted value
I CVE-2009-2408: Null characters in Distinguished Names (ASN.1

Strings) in Firefox (and others)
I CVE-2014-1568: NSS/CyaSSL/PolarSSL Signature Forgery (ASN.1

Length Encodings)

I CVE-2014-3511: OpenSSL downgrade attack (Record splitting)
I 2013: the Alert attack (Record boundaries) in OpenSSL (and others)
I CVE-2014-0160: OpenSSL’s Heartbleed (Record boundaries)

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 12 / 28



Parsing bugs

Parsing complex structures can trigger memory management issues in
low-level languages such as C

Beyond them, parsing errors can lead to confusion on the interpreted value
I CVE-2009-2408: Null characters in Distinguished Names (ASN.1

Strings) in Firefox (and others)
I CVE-2014-1568: NSS/CyaSSL/PolarSSL Signature Forgery (ASN.1

Length Encodings)
I CVE-2014-3511: OpenSSL downgrade attack (Record splitting)
I 2013: the Alert attack (Record boundaries) in OpenSSL (and others)
I CVE-2014-0160: OpenSSL’s Heartbleed (Record boundaries)

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 12 / 28



Focus on the Signature Forgery attack (BERserk)

An RSA signature is a signature over an ASN.1 structure embedding the
actual hash value

Several implementations exhibited great laxism in the way ASN.1 messages
are parsed
I arbitrary length encoding
I integer overflow in length values

This led to the ability for an attacker to forge ASN.1 messages for an
arbitrary hash value, accepted by major implementations (including NSS)

Reminder: the ASN.1 message should be DER-encoded, which is a strict
set of encoding rules

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 13 / 28



Focus on the Signature Forgery attack (BERserk)

An RSA signature is a signature over an ASN.1 structure embedding the
actual hash value

Several implementations exhibited great laxism in the way ASN.1 messages
are parsed
I arbitrary length encoding
I integer overflow in length values

This led to the ability for an attacker to forge ASN.1 messages for an
arbitrary hash value, accepted by major implementations (including NSS)

Reminder: the ASN.1 message should be DER-encoded, which is a strict
set of encoding rules

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 13 / 28



Focus on the Signature Forgery attack (BERserk)

An RSA signature is a signature over an ASN.1 structure embedding the
actual hash value

Several implementations exhibited great laxism in the way ASN.1 messages
are parsed
I arbitrary length encoding
I integer overflow in length values

This led to the ability for an attacker to forge ASN.1 messages for an
arbitrary hash value, accepted by major implementations (including NSS)

Reminder: the ASN.1 message should be DER-encoded, which is a strict
set of encoding rules

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 13 / 28



Lessons learned
Observations
I complex structures lead to complex code and to bugs
I corner cases need to be explicited (and tested)
I when dealing with security, the Postel law is dangerous

Possible solutions
I better languages, tools and tests
I more formal specifications
I when applicable, prefer reconstructing a value rather than parsing and

validating it

What about TLS 1.3?
I not much
I ... but some cases have been described and disambiguated

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 14 / 28



Lessons learned
Observations
I complex structures lead to complex code and to bugs
I corner cases need to be explicited (and tested)
I when dealing with security, the Postel law is dangerous

Possible solutions
I better languages, tools and tests
I more formal specifications
I when applicable, prefer reconstructing a value rather than parsing and

validating it

What about TLS 1.3?
I not much
I ... but some cases have been described and disambiguated

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 14 / 28



Lessons learned
Observations
I complex structures lead to complex code and to bugs
I corner cases need to be explicited (and tested)
I when dealing with security, the Postel law is dangerous

Possible solutions
I better languages, tools and tests
I more formal specifications
I when applicable, prefer reconstructing a value rather than parsing and

validating it

What about TLS 1.3?
I not much
I ... but some cases have been described and disambiguated
O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 14 / 28



Implementation Flaws
The real impact of obsolete cryptography on

security



Bleichenbacher (1/2)

RSA PKCS#1 v1.5
I RSA encryption requires a padding scheme
I how should we handle an invalid padding after decryption?

Bleichenbacher attack (1998)
I main idea: send altered versions of a target encrypted message and

observe the server behaviour
I if the attacker can distinguish a valid from an invalid padding, he can

gather information on the plaintext
I this can be applied to TLS: the so-called “Million Message Attack”

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 16 / 28



Bleichenbacher (1/2)

RSA PKCS#1 v1.5
I RSA encryption requires a padding scheme
I how should we handle an invalid padding after decryption?

Bleichenbacher attack (1998)
I main idea: send altered versions of a target encrypted message and

observe the server behaviour
I if the attacker can distinguish a valid from an invalid padding, he can

gather information on the plaintext
I this can be applied to TLS: the so-called “Million Message Attack”

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 16 / 28



Bleichenbacher (2/2)

The attack resurfaces in 2014
I in Java, a padding error triggers an exception
I so, to avoid a timing attack, one must redevelop the mechanism
I a TLS developer has to choose between modularity and security

... and in 2016
I DROWN (Decrypting RSA with Obsolete and Weakened eNcryption)
I attacking SSLv2 to recover a TLS pre-master secret

... and in 2017 with ROBOT (Return Of Bleichenbacher’s Oracle
Threat)... and in 2018 with CAT

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 17 / 28



Bleichenbacher (2/2)

The attack resurfaces in 2014
I in Java, a padding error triggers an exception
I so, to avoid a timing attack, one must redevelop the mechanism
I a TLS developer has to choose between modularity and security

... and in 2016
I DROWN (Decrypting RSA with Obsolete and Weakened eNcryption)
I attacking SSLv2 to recover a TLS pre-master secret

... and in 2017 with ROBOT (Return Of Bleichenbacher’s Oracle
Threat)... and in 2018 with CAT

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 17 / 28



Bleichenbacher (2/2)

The attack resurfaces in 2014
I in Java, a padding error triggers an exception
I so, to avoid a timing attack, one must redevelop the mechanism
I a TLS developer has to choose between modularity and security

... and in 2016
I DROWN (Decrypting RSA with Obsolete and Weakened eNcryption)
I attacking SSLv2 to recover a TLS pre-master secret

... and in 2017 with ROBOT (Return Of Bleichenbacher’s Oracle
Threat)... and in 2018 with CAT

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 17 / 28



Similar issues in the symmetric domain

Dangerous or fragile constructions also exist in the Record Protocol (which
protects the application data with symmetric cryptography):
I RC4
I the CBC mode used with the MAC-then-Encrypt paradigm
I invalid GCM nonce reuse breaking the integrity protection

There again, developers must make hard choices to ensure compatibility
while keeping their code maintainable and secure...

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 18 / 28



Similar issues in the symmetric domain

Dangerous or fragile constructions also exist in the Record Protocol (which
protects the application data with symmetric cryptography):
I RC4
I the CBC mode used with the MAC-then-Encrypt paradigm
I invalid GCM nonce reuse breaking the integrity protection

There again, developers must make hard choices to ensure compatibility
while keeping their code maintainable and secure...

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 18 / 28



Lessons learned
Observations
I obsolete crypto can put developers in an impossible situation where

they have to choose between modularity, compatibility and security
I the situation always gets worse with time (a.k.a Schneier’s “Attacks

always get better”)

Possible solutions
I drop obsolete and fragile constructions as soon as possible
I constrain the standard so that only correct uses are compliant

What about TLS 1.3?
I only modern robust constructions have been standardized
I the only remaining legacy crypto is the RSA PKCS#1 v1.5 signature

scheme used in certificates

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 19 / 28



Lessons learned
Observations
I obsolete crypto can put developers in an impossible situation where

they have to choose between modularity, compatibility and security
I the situation always gets worse with time (a.k.a Schneier’s “Attacks

always get better”)

Possible solutions
I drop obsolete and fragile constructions as soon as possible
I constrain the standard so that only correct uses are compliant

What about TLS 1.3?
I only modern robust constructions have been standardized
I the only remaining legacy crypto is the RSA PKCS#1 v1.5 signature

scheme used in certificates

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 19 / 28



Lessons learned
Observations
I obsolete crypto can put developers in an impossible situation where

they have to choose between modularity, compatibility and security
I the situation always gets worse with time (a.k.a Schneier’s “Attacks

always get better”)

Possible solutions
I drop obsolete and fragile constructions as soon as possible
I constrain the standard so that only correct uses are compliant

What about TLS 1.3?
I only modern robust constructions have been standardized
I the only remaining legacy crypto is the RSA PKCS#1 v1.5 signature

scheme used in certificates

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 19 / 28



Implementation Flaws
The consequences of complex state machines



WinShock
WinShock is a simple buffer overflow in Microsoft’s stack... but is it?

I Certificate client authentication (using elliptic curves) relies on two
messages

I Certificate, with the certificate chains
I it contains the used elliptic curve
I in particular, the size S of the underlying field

I CertificateVerify, which contains a signature over the previous
Handshake messages
I this signature contains the coordinates of a point, of size l
I SChannel did not verify that the l bytes would fit in the previously

allocated memory area for S bytes...

But certificate client authentication is optional and rarely used?

In the default setting, all vulnerable servers nevertheless interpeted
unsollicited messages, making them exploitable in practice

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 21 / 28



WinShock
WinShock is a simple buffer overflow in Microsoft’s stack... but is it?
I Certificate client authentication (using elliptic curves) relies on two

messages

I Certificate, with the certificate chains
I it contains the used elliptic curve
I in particular, the size S of the underlying field

I CertificateVerify, which contains a signature over the previous
Handshake messages
I this signature contains the coordinates of a point, of size l
I SChannel did not verify that the l bytes would fit in the previously

allocated memory area for S bytes...

But certificate client authentication is optional and rarely used?

In the default setting, all vulnerable servers nevertheless interpeted
unsollicited messages, making them exploitable in practice

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 21 / 28



WinShock
WinShock is a simple buffer overflow in Microsoft’s stack... but is it?
I Certificate client authentication (using elliptic curves) relies on two

messages
I Certificate, with the certificate chains

I it contains the used elliptic curve
I in particular, the size S of the underlying field

I CertificateVerify, which contains a signature over the previous
Handshake messages
I this signature contains the coordinates of a point, of size l
I SChannel did not verify that the l bytes would fit in the previously

allocated memory area for S bytes...

But certificate client authentication is optional and rarely used?

In the default setting, all vulnerable servers nevertheless interpeted
unsollicited messages, making them exploitable in practice

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 21 / 28



WinShock
WinShock is a simple buffer overflow in Microsoft’s stack... but is it?
I Certificate client authentication (using elliptic curves) relies on two

messages
I Certificate, with the certificate chains

I it contains the used elliptic curve
I in particular, the size S of the underlying field

I CertificateVerify, which contains a signature over the previous
Handshake messages
I this signature contains the coordinates of a point, of size l
I SChannel did not verify that the l bytes would fit in the previously

allocated memory area for S bytes...

But certificate client authentication is optional and rarely used?

In the default setting, all vulnerable servers nevertheless interpeted
unsollicited messages, making them exploitable in practice

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 21 / 28



WinShock
WinShock is a simple buffer overflow in Microsoft’s stack... but is it?
I Certificate client authentication (using elliptic curves) relies on two

messages
I Certificate, with the certificate chains

I it contains the used elliptic curve
I in particular, the size S of the underlying field

I CertificateVerify, which contains a signature over the previous
Handshake messages
I this signature contains the coordinates of a point, of size l
I SChannel did not verify that the l bytes would fit in the previously

allocated memory area for S bytes...

But certificate client authentication is optional and rarely used?

In the default setting, all vulnerable servers nevertheless interpeted
unsollicited messages, making them exploitable in practice

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 21 / 28



WinShock
WinShock is a simple buffer overflow in Microsoft’s stack... but is it?
I Certificate client authentication (using elliptic curves) relies on two

messages
I Certificate, with the certificate chains

I it contains the used elliptic curve
I in particular, the size S of the underlying field

I CertificateVerify, which contains a signature over the previous
Handshake messages
I this signature contains the coordinates of a point, of size l
I SChannel did not verify that the l bytes would fit in the previously

allocated memory area for S bytes...

But certificate client authentication is optional and rarely used?

In the default setting, all vulnerable servers nevertheless interpeted
unsollicited messages, making them exploitable in practice

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 21 / 28



Shaky state machines

Most TLS stacks proved to be vulnerable to such issues in state machines,
where invalid paths could be triggered, sometimes leading to security flaws

I CVE-2014-0224: EarlyCCS (skip key installation) in OpenSSL
I CVE-2014-6593: Early Finished (server impersonation) in JSSE and

CyaSSL
I Skip Verify (client impersonation) in Mono stack, CyaSSL and

OpenSSL
I CVE-2015-0204: FREAK (server impersonation) in OpenSSL, Apple

SecureTransport and Microsoft SChannel and many others

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 22 / 28



Shaky state machines

Most TLS stacks proved to be vulnerable to such issues in state machines,
where invalid paths could be triggered, sometimes leading to security flaws
I CVE-2014-0224: EarlyCCS (skip key installation) in OpenSSL
I CVE-2014-6593: Early Finished (server impersonation) in JSSE and

CyaSSL

I Skip Verify (client impersonation) in Mono stack, CyaSSL and
OpenSSL

I CVE-2015-0204: FREAK (server impersonation) in OpenSSL, Apple
SecureTransport and Microsoft SChannel and many others

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 22 / 28



Shaky state machines

Most TLS stacks proved to be vulnerable to such issues in state machines,
where invalid paths could be triggered, sometimes leading to security flaws
I CVE-2014-0224: EarlyCCS (skip key installation) in OpenSSL
I CVE-2014-6593: Early Finished (server impersonation) in JSSE and

CyaSSL
I Skip Verify (client impersonation) in Mono stack, CyaSSL and

OpenSSL

I CVE-2015-0204: FREAK (server impersonation) in OpenSSL, Apple
SecureTransport and Microsoft SChannel and many others

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 22 / 28



Shaky state machines

Most TLS stacks proved to be vulnerable to such issues in state machines,
where invalid paths could be triggered, sometimes leading to security flaws
I CVE-2014-0224: EarlyCCS (skip key installation) in OpenSSL
I CVE-2014-6593: Early Finished (server impersonation) in JSSE and

CyaSSL
I Skip Verify (client impersonation) in Mono stack, CyaSSL and

OpenSSL
I CVE-2015-0204: FREAK (server impersonation) in OpenSSL, Apple

SecureTransport and Microsoft SChannel and many others

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 22 / 28



Lessons learned
Observations
I all major impementations did not correctly handle TLS state machine
I maybe SSL/TLS is too complex?

Possible solutions
I test all possible message sequences
I write crystal clear specifications, including a reference automaton
I drop support for old/useless/dangerous versions/options

What about TLS 1.3?
I on one hand, TLS 1.3 simplified the messages
I ... but 0 RTT mode is a complex beast in TLS 1.3
I ... but TLS 1.3 added fake messages to accomodate middleboxes
I ... and we might have to live at least with TLS 1.2 for some time

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 23 / 28



Lessons learned
Observations
I all major impementations did not correctly handle TLS state machine
I maybe SSL/TLS is too complex?

Possible solutions
I test all possible message sequences
I write crystal clear specifications, including a reference automaton
I drop support for old/useless/dangerous versions/options

What about TLS 1.3?
I on one hand, TLS 1.3 simplified the messages
I ... but 0 RTT mode is a complex beast in TLS 1.3
I ... but TLS 1.3 added fake messages to accomodate middleboxes
I ... and we might have to live at least with TLS 1.2 for some time

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 23 / 28



Lessons learned
Observations
I all major impementations did not correctly handle TLS state machine
I maybe SSL/TLS is too complex?

Possible solutions
I test all possible message sequences
I write crystal clear specifications, including a reference automaton
I drop support for old/useless/dangerous versions/options

What about TLS 1.3?
I on one hand, TLS 1.3 simplified the messages
I ... but 0 RTT mode is a complex beast in TLS 1.3
I ... but TLS 1.3 added fake messages to accomodate middleboxes
I ... and we might have to live at least with TLS 1.2 for some time
O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 23 / 28



Conclusion and Take away
messages



Complexity leads to insecurity

Implementation flaws can happen at different levels

Specifications can help avoid complications
I better and unamibguous message formats
I up-to-date cryptographic primitives
I simple and formally-defined state machines

This would lead the standard to constrain implementers

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 25 / 28



Better languages, tools and methodologies

Several bugs could be avoided by using modern development tools
I modern programming languages
I strict compilers and static analysers
I tests, tests, tests

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 26 / 28



Beyond TLS 1.3

TLS 1.3 improved some implementation aspects
I but it also created new complexities
I and previous versions are far from gone

The IETF is currently standardizing QUIC
I a new secure transport layer on top of UDP
I reusing TLS 1.3
I with very complex constructions...

O. Levillain (Télécom SudParis) SSL/TLS 2020-11-05 27 / 28



Questions?

Thank you for your attention

@pictyeye
olivier.levillain@telecom-sudparis.eu

https://paperstreet.picty.org/yeye


