
Implementation Flaws in TLS Stacks: Lessons Learned
and Study of TLS 1.3 Benefits

Olivier Levillain
olivier.levillain@telecom-sudparis.eu

Télécom SudParis, Institut Polytechnique de Paris

Abstract. In the years leading to the definition of TLS 1.3, many vulnerabilities
have been published on the TLS protocol, including numerous implementation
flaws affecting a wide range of independent stacks. The infamous Heartbleed
bug, was estimated to affect more than 20 % of the most popular HTTPS servers.
We propose a structured review of these implementation flaws. By considering
their consequences but also their root causes, we present some lessons learned or
yet to be learned. We also assess the impact of TLS 1.3,the latest version of the
protocol, on the security of SSL/TLS implementations.

SSL (Secure Sockets Layer) is a cryptographic protocol designed by Netscape in 1995
to protect the confidentiality and integrity of HTTP connections, mainly to secure on-
line commercial or financial operations. Since 1999, the protocol has been maintained
by the IETF (Internet Engineering Task Force) and has been renamed TLS (Transport
Layer Security). In this article, when referring to the protocol in general, we will use
the SSL/TLS denomination.

SSL/TLS has now become an essential part of Internet security. The most recent
version of the protocol is TLS 1.3 [24], which was published after more than 5 years of
discussion within the IETF TLS Working Group.

In this paper, we do not address the question of the theoretical security of the pro-
tocol and of its underlying cryptographic mechanisms, but the actual security of the
implementations. Indeed, because of bugs or more subtle quirks, there may be unex-
pected vulnerabilities whose consequences may go beyond the security of the consid-
ered transaction or service. We thus studied in depth many known implementation flaws
in SSL/TLS stacks to understand their root causes and to propose ways to improve the
situation. Indeed some mistakes keep being repeated and affect independent software
stacks; this led us to question whether blaming the developers for ignoring the “state of
the art” was the right answer.

First, we look at simple, classical programming errors such as buffer overflows or
logic errors in Section 1. The second category, in Section 2, is about parsing bugs, which
are sometimes the result of the complexity of the structures to interpret. Next, we look
at cryptography-related vulnerabilities in Section 3, which are sometimes presented as
mistakes from the developers, whereas we strongly believe that obsolete cryptographic
primitives are the underlying cause in many cases, leaving the developers who must
choose between code modularity and security in a difficult position. The last category,
described in Section 4, is about issues in SSL/TLS state machines. It is indeed some-
times possible to get an implementation into an invalid state, where it would accept

unsolicited or meaningless messages, which can lead to catastrophic consequences for
the security of the communications. Each section ends with a decription of the lessons
we can learn from the presented problems, as well as a discussion about what TLS 1.3
has brought to improve the situation on the subject.

1 Common programming errors

1.1 CVE-2014-1266: Apple’s goto fail

In February 2014, Apple released a security advisory, indicating that an attacker could
bypass the server authentication mechanism on the client side in its operating systems.
In the vulnerable function (see listing in appendix A), a goto fail instruction was
wrongly duplicated, which means that the actual verification of the server signature (the
sslRawVerify call) was skipped. So, when the client took that code path (as soon as
a Diffie-Hellman ciphersuite was negotiated), the server signature over the parameters
was not checked and the server was automatically authenticated.

An attacker could thus simply impersonate a TLS server by forcing the use of a vul-
nerable suite in the ServerHello message, then present the legitimate certificates, and
finally send an arbitrary ServerKeyExchange message, since its authenticity would
not be checked: from the client’s point of view, the server certificate was however cor-
rectly validated, leading to an authentication bypass.

The problem was quickly and easily fixed, but it showed that the corresponding code
had not been sufficiently tested or checked using static analysis, since such a trivial case
of dead code should have been detected. Such dead code can indeed be detected with
modern compilers such as clang with -Wunreachable-code1.

After this bug, people started to advocate for better compilers, analysis tools, or
even for the use of safer alternative languages instead of the C language. Several com-
mentators explained that this bug would have been avoided, had the developers used
curly brackets for their if statements. Yet, without tools enforcing such practice, we
would still have no guarantee; and if we were using tools, it would be safer to have
them identify the root cause (dead code).

1.2 CVE-2014-0092: GnuTLS’ goto fail

A few days after Apple’s goto fail, GnuTLS released another advisory concerning a
vulnerability in the code checking signatures. The issue was (a little) subtler, about the
check if ca function checking whether a certificate was from a certification authority
(CA), and the gnutls verify certificate2 function checking the signature. Even
though the documentation stated these functions returned a boolean value (that is 0 or
1), they could actually also return a negative value in some parsing error cases.

So, when critical functions, such as gnutls x509 crt check issuer, called those
functions treating the result as a boolean, they would reject certificates with invalid
signature, accept valid certificates, but also accept ill-formed certificates. Listings in
appendix B contain the relevant code excerpts.

1 However, gcc has been silently ignoring this option since version 4.5.

GnuTLS developers fixed the corresponding logic in a defensive way, on the one
hand by insuring the called functions indeed returned only 0 or 1, and on the other hand
by having the calling functions check the result in a stricter way.

It is worth noting that a similar bug had already been found six years earlier in
OpenSSL (CVE-2008-5077) (except that the bug was triggered by the code parsing
the signature block, not the certificate). There again, the question of the used tools and
languages was raised.

1.3 CVE-2002-0862 and CVE-2011-0228: BasicConstraints checks.

To distinguish a CA certificate from a server certificate, the X.509 standard requires
relying parties to check the BasicConstraints extension. This X.509 extension con-
tains a boolean, cA, which should only be true when the certificate belongs to a certi-
fication authority. Valid X.509 stacks must in particular check this information when
checking a certificate chain. The impact of this boolean is critical, since a certificate
with a true cA boolean allow, in the common cases, its owner to issue arbitrary certifi-
cates for arbitrary domain names.

In 2002, Marlinspike showed that Internet Explorer did not actually check this
boolean [19], allowing an attacker to reuse any certificate she possesses (even a sim-
ple SSL server one) to sign new arbitrary certificates. This was a trivial yet critical
bug. What is more interesting is that the same bug reappeared in 2011 in Apple’s TLS
stack [21], a different, independent, TLS stack. In both cases, one can at least question
the test process.

1.4 CVE-2014-0160: Heartbleed

In April 2014, a devastating vulnerability in OpenSSL was presented – a “common”
buffer overrun in the Heartbeat implementation.

Heartbeat is a TLS extension. When it has been negotiated, the client or the server
can, at any time, send a Heartbeat record containing data, and the recipient has to echo
those data back. Such a mechanism can theoretically be used for two purposes: Path
MTU (i.e. maximal packet size) Discovery and a secure Keep Alive mechanism. In
practice, both goals are mostly relevant to DTLS, the datagram version of TLS, which
can be used over UDP. Yet the Heartbeat extension was integrated into OpenSSL for
both DTLS and TLS on December 31st 20112, and activated by default.

When a vulnerable version of OpenSSL received a Heartbeat request advertising
a content longer than the sent payload, it filled the response with the received content
and whatever was present afterwards in memory. All kinds of heap-allocated data could
be endangered: contents of communications between other clients and the server, au-
thentication cookies, user passwords, and even the server’s private key. In practice, Du-
rumeric et al. estimated that 24 to 55 % of the most popular HTTPS sites were affected
by Heartbleed [13].

2 The first official OpenSSL version containing the Heartbeat extension was 1.0.1, published on
March 14th 2012.

Fixing the code was trivial, but not handling all the possible consequences. It is hard
to say whether or not this vulnerability was known and exploited, but the precautionary
principle advocated e.g. for revocation of millions of vulnerable server certificates.

1.5 CVE-2014-6321: WinShock

In November 2014, Microsoft published a security advisory, MS14-066, with multiple
vulnerabilities. One of them, dubbed WinShock, was about a buffer overflow in SChan-
nel, Microsoft’s TLS stack.

The flaw was located in the DecodeSigAndReverse function, which parses ECDSA
signatures in the context of client certificate authentication. When handling a client cer-
tificate using elliptic-curve cryptography, the certificate, present in the Certificate
message, is first parsed. The server extracts the public key the elliptic curve used for
the signature, either using well known identifiers (several curves can be identified by
ASN.1 Object Identifiers) or in an explicit manner (the description then contains the
underlying finite field and the curve equation). In both cases, the public key sets the
coordinate size. In a second phase, the signature is read from the CertificateVerify
message, which contains two scalars whose size is given by the curve.

In SChannel, the vulnerable code allocated memory regions for the signature, based
on the curve description from the certificate, then read the data from the signature, using
this time the encoded ASN.1 length of the signature, without checking the consistency
between both lengths. It was thus possible to trigger a buffer overflow using long co-
ordinates within a crafted signature in the CertificateVerify message. Smashing
data in the heap using this vulnerability was proven exploitable in IIS servers: proofs of
concept could even lead to remote code execution on vulnerable systems.

In a typical configuration, client certificates are rarely used. However, even un-
solicited Certificate and CertificateVerify were parsed by SChannel, which
means an attacker could trigger the vulnerability in any SChannel deployment. So this
is a second bug affecting the state machine (more on similar bugs in Section 4).

1.6 Lessons learned

When one look at these vulnerabilities, one might be tempted to blame the developers
for making so many mistakes, and for repeating them over and over.

At the same time, it seems the languages or tools used for the development could
and should have been more helpful, e.g. by offering a real boolean type3 or by warning
for trivial errors such as having obvious dead code in a function.

One way for hardening the code is to configure the tools to be as strict as possible.
For example, in C, one can require additional checks using -Wall -Wextra -Werror
and other similar options at all times.

Some programming languages are better than others to avoid whole classes of bugs,
but there is no silver bullets, and it is essential to always understand exactly what you are
trading in exchange for what. For example, languages with garbage collector eradicate

3 The C99 standard introduced such a type, but it seems almost no one makes use of it.

memory management error such as use-after-free and double-free. Yet having no fine-
grain control on memory management means that you cannot easily ensure that secrets
(private keys, passwords) are erased as soon as possible from the memory, and actually,
they could even be copied at multiple memory locations several times by the garbage
collector during their lifetime.

Once developers understand languages constructions and their behavior, they can
adopt more robust structures, e.g. always err on the safe side as this was done by
GnuTLS developers to fix the goto fail bug, by only considering 1 as the valid case,
instead of everything that is not 0. Another example is the use of bound-checking arrays,
where each read or write access is checked at runtime to stay within the array bound-
aries (as in Java, OCaml or Rust). Even if this kind of mechanisms induces a small
overhead, it is a good way to avoid buffer overflows. Yet, developers should be aware
that some constructions may evade these safety mechanisms and stay away from unsafe
features. Ensuring that third-party libraries behave correctly is also recommended.

All in all, mastering programming languages, choosing adequate compilers and
tools and correctly using them can help improve code quality and avoid several classes
of software bugs.

A word about tests Another best practice is negative testing: when security is involved,
it is not sufficient to check that what should work works, it is crucial to also check that
what should not work does actually not. Checking that a Handshake fails as expected
when a signature is invalid would have prevented Apple’s goto fail vulnerability.

Moreover, since programmers seem to make the same mistakes time and again
in different code bases, it might be useful to build a collection of negative and non-
regression tests to share between implementations. In this domain, the situation has
slightly improved, with tools such as tlsfuzzer4 and TLS-Attacker5.

TLS 1.3 benefits With regards to languages and tools, TLS 1.3 does not bring any-
thing, since the RFC is a specification. Moreover, the IETF always insisted on letting
developers be free to make implementation choices.

2 Parsing bugs

In the previous section, we studied classical simple errors such as memory management
issues. Such bugs can also arise in the parser code. Beyond these somewhat common
bugs, parsers trigger another class of vulnerabilities, when the parsed content does not
correspond to its intended value. Such bugs can result from a confusion in the specifi-
cation or a lack of precision in the parsing code.

4 https://github.com/tomato42/tlsfuzzer
5 https://github.com/RUB-NDS/TLS-Attacker

2.1 CVE-2009-2408: Null characters in distinguished names

In 2009, Marlinspike presented several bugs in TLS stacks leading to authentication
bypass [20]. In particular, he presented a difference of behavior between several X.509
implementations in the presence of null characters.

ASN.1 specifications are clear on the subject: the length of a string is explicitly set
by a separate field, and most ASN.1 string types do not allow for null characters. Yet,
several browsers, e.g. Firefox, actually accepted and interpreted null characters as the
end of the string, leading to an alternate interpretation.

Let’s consider an attacker requesting a certificate for the www.mybank.com\0.evil.com
domain, where evil.com is controlled by the attacker and \0 is the null character.
Moreover, we assume the contacted CA simply extracts the top-level domain evil.com
and sends a validation email to postmaster@evil.com. Under these assumptions, the
attacker can get their certificate. The provided certificate could then be used against
vulnerable browsers to impersonate www.mybank.com.

Beyond the obvious misinterpretation from browsers, which should not rely on null
characters to end ASN.1 DER strings, there is another bug: the CA should not have
accepted ill-formed data as part of a fully-qualified domain name in the first place. This
example shows that, as soon as two implementations do not agree on the interpretation
of a given element, there is a gap that an attacker can (and will) exploit.

2.2 CVE-2014-3511: OpenSSL downgrade attack

TLS allows records from the same type to be split and merged in a very liberal way.
What is allowed and forbidden is not always clear in the specification. Yet, splitting
records is required in some cases, since Handshake messages can be 16 MB long
whereas TLS records are limited to 16 KB.

In July 2014, Benjamin and Langley showed that OpenSSL exhibited a strange be-
havior when it receives a ClientHello message split in very small records. When
parsing the first ClientHello fragment, an implementation needs at least 6 bytes in
the record payload to identify the proposed protocol version. In the absence of this
information, OpenSSL was not able to extract the proper version and systematically
used TLS 1.0 instead of waiting for the rest of the ClientHello message. Moreover,
since only the aggregated content of the records are integrity-protected, the exact way
Handshake messages are split can easily be changed by an attacker without detection.

To fix this bug, OpenSSL developers chose to reject tiny ClientHello fragments.
This is an incorrect behavior with respect to the specification, but the alternative was
deemed too complex to implement. We find that the decision is actually relevant, and
that the specification should probably contain some constraints to allow for reasonable
expectations from the developers.

This attack shows that the complexity of TLS, combined with the need to support
several protocol versions, can lead to subtle implementation difficulties. A similar ex-
ample is given by Bhargavan et al. [7], with the Alert attack, where an attacker can
misalign the boundaries of alert messages (which are 2 bytes long) with the records
encapsulating them. It is then possible to send one byte in an unprotected alert record
that may be interpreted later as an authenticated piece of alert.

2.3 CVE-2014-1568: NSS/CyaSSL/PolarSSL Signature Forgery

In September 2014, another vulnerability allowing to bypass server authentication on
several TLS clients was published. The vulnerability affected NSS, the Firefox crypto-
graphic library, as well as CyaSSL and PolarSSL. It takes its root in the code parsing
DER-encoded RSA signature. DER is a concrete representation of ASN.1 enforcing
normal forms: there should be one and only one correct representation for each abstract
value.

It is actually a variant of an attack presented in 2006 by Bleichenbacher. The original
vulnerability relied on broken RSA implementations that did not check the absence of
data beyond the DigestInfo block [9]. In the case of a small public exponent (such
as 3), it is easy to forge a signature for such a message, that would be accepted by fuzzy
implementations.

The vulnerability presented in September 2014 is another universal, relying on three
elements to be exploitable: the attacker needs to find an RSA key with a public exponent
equal to 3 (this exponent can be anywhere in the certificate chain she is trying to spoof);
the ASN.1 DER parser must be too liberal, i.e. accept non-canonically encoded values;
DER length computation can silently overflow. Details can be found in appendix C.

The obvious fix here is to use a strict DER parser. However, it is even possible to
avoid the parsing step altogether by re reversing the comparison process while check-
ing a signature: instead of computing m = se from the signature s, then parse m and
finally compare the encompassed hash value inside m, a robust implementation should
produce the message m? containing the expected DigestInfo, then compute m = se

and compare m to m?.
By comparing concrete representations instead of abstract ones, we skip the parsing

step and the only operations manipulating attacker-controlled data are the se computa-
tion and the trivial binary comparison. Moreover, since DER is a canonical representa-
tion of the abstract value, m? is unambiguously defined6.

2.4 Lessons learned

Despite the important number of implementations affected by the parsing issues de-
scribed in this section, it would not be fair to conclude that all these bugs were only the
result of poor programming practices. Developers obviously bear their share of respon-
sibility, but several errors were also the result of complex or ill-specified protocols and
formats.

In particular, parsing attacker-controlled data is an error-prone process that should
never be overlooked. As soon as parsing is not straightforward and can lead to ambi-
guities, security vulnerabilities may arise, either because of different actors interpreting
the same messages differently, or because it allows an attacker to tamper with the ex-
pected execution path. We must insist that the so-called robustness principle (Be liberal
in what you accept, conservative in what you send) is a terribly wrong advice regarding

6 This is actually an approximation, since some implementations still produce ill-formed
DigestInfo where the algorithm parameters is omitted, instead of being a DER NULL el-
ement. To accommodate such pervasive deviations, a robust implementation should thus pro-
duce two versions of m?.

security: it should be replaced by another, simpler, statement: be conservative, always
(and report bugs in confusing specifications).

Recipes to improve security would include writing strict parsers, avoid exposing
them when possible (e.g. by comparing concrete representations instead of abstract,
parsed ones), stress-test the parsers in corner cases. Yet, the real long-term advice is to
simplify the specification and to express them using a more formal language, to reduce
the possibilities of bugs and ambiguities in the resulting code.

TLS 1.3 benefits From the message parsing point of view, RFC 8446 is similar to
the previous TLS specifications, but some problematic cases have been described, to
disambiguate corner cases such as the Alert attack discussed earlier (section 5.1 of the
RFC 8446 is crystal clear on the encapsulation of alerts within records). However, one
might still feel uneasy with Handshake messages or extensions whose exact content
depends on the context, which adds unnecessary complexity in the parsers.

3 The real impact of obsolete cryptography on security

SSL/TLS is a rather old protocol, dating back 1995. The cryptography community has
since learned a lot about algorithms, schemes and protocols. This knowledge has not
always been taken into account in recent versions of the protocol, mostly for compati-
bility reasons:TLS 1.2 still (partly) relies on PKCS#1 v1.5 encryption, the CBC mode,
and the MAC-then-Encrypt paradigm. In this section, we present the implications on
implementations of using obsolete cryptography.

3.1 CVE-2013-0169: the dangers of MAC-then-Encrypt

Since its inception, SSL/TLS has been supporting the MAC-then-CBC paradigm to
protect its records. This led to Lucky13, an attack using a timing information leak during
TLS record decryption as a padding oracle [3]. Even if one may think this flaw is only
an implementation issue (writing constant-time code to decrypt and check the integrity
of a record), we believe the problem runs deeper.

Indeed, when one looks at the complex corresponding patch in OpenSSL [18], one
is forced to note that it is a vast amount of complex and intricate calls to hash com-
pression functions and decryption primitives. We have traded a simple and intuitive
decrypt/unpad/MAC-check sequence with low-level instructions. Moreover, the porta-
bility of the OpenSSL fix is debatable, since Langley had to trick the compiler to avoid
low-level optimization related to modular reductions on small integers7.

This is the reason why researchers (and the TLS 1.3 standard) promote higher-level
and secure-by-design constructions, such as AEAD ciphers, to obtain strong guarantees
on both the confidentiality and the integrity of the protected data.

A simpler path was even presented in 2001 by Krawczyk [15]: Encrypt-then-MAC,
which can be proven to be safer. So, despite the Record Protocol protection was known

7 In a nutshell, the DIV instruction takes a variable amount of time depending on its argument
on Intel CPUs, which could be observable.

to be flawed in 2001, it was only partially fixed in 2008 with TLS 1.2 and the intro-
duction of AEAD constructions.Only TLS 1.3 completely deprecates the flawed CBC
mode (and the biased RC4 algorithm), by forcing the use of AEAD algorithms.

The impact on TLS stacks is a difficult choice between straightforward and modular,
but flawed, code on the one side, and a complex, hard-to-follow and error-prone, but
theoretically sound implementation on the other side.

Considering the difficulty to fix this issue, it is worth looking the story of s2n,
a TLS implementation released by Amazon [17]. Despite including countermeasures
against Lucky13, Albrecht and Paterson presented evidence that the library was never-
theless vulnerable to a weaker, yet still exploitable, form of padding oracle [2]. To avoid
writing too low-level code, s2n decryption code execution time was indeed not exactly
constant.

3.2 CVE-2016-0270: Issues with GCM Nonce Generation

Another way symmetric cryptography can fail is when you do not fulfill the expected
assumption. In general, blockcipher modes of operation require the use of parameters,
such as IVs (Initial Values) or Nonces, which are required to be unpredictable or unique,
depending on the schemes.

In 2016, Böck et al. showed that several HTTPS servers at large reused nonce val-
ues, or generated them in a non-optimal way [11]. Indeed, GCM requires the 64-bit
nonce used in TLS to be unique. Reusing a value twice fully breaks the authenticity of
connections. It is interesting to notice that drawing random values leads to collisions
(hence nonce reuse) faster than a simple counter. The correct fix here is to use such a
counter

In other schemes, what is important is not uniqueness, but unpredictability, as is
the case with the CBC mode, where leaking the next IV to use can lead to real-world
attacks such as BEAST [12].

One way to solve the problem is to force the developer to make the right decision.
This is why TLS 1.3 mandates how to generate the nonce in a deterministic way: the
value is derived by each participant using authenticated information sent on the wire
and a shared secret.

3.3 CVE-2014-0411 and others: PKCS#1 v1.5 and Bleichenbacher

A valid PKCS#1 v1.5 message is produced by formatting the plaintext and then encrypt-
ing it using the raw RSA operation. The expected format for an encrypted message is
the following: a null byte, followed by a block type byte (here, 2), then at least 8 random
padding bytes, a null character and finally the message to encrypt (see appendix D for
more details).

It thus means that every correctly padded plaintext starts with 00 02, which corre-
sponds to a big integer between 2 × 2n−16 and 3 × 2n−16 (with an n-bit modulus). If an
attacker wishes to recover the plaintext P associated to a given ciphertext C, she can
multiply C by Xe and submit the new ciphertext to a decryption oracle: the padding will
be correct as soon as P× X is between the expected bounds. By iterating such attempts,

it is possible to aggregate information about the original plaintext P and recover it, as
was shown by Bleichenbacher in 1998 [8] in his so-called Million Message Attack.

The attack is applicable to RSA encryption key exchange in TLS. As described in
RFC 3218,there are three classical countermeasures:

– group all possible errors so they lead to a unique signal, where the padding errors
are indistinguishable from other errors;

– where possible, ignore all errors silently and replace the decrypted message by a
random string (this is what is recommended for RSA encryption key exchange in
TLS since version 1.0);

– use PKCS#1 v2.1 encryption (OAEP).
Even if the Million Message Attack has been known since 1998, it is still a prob-

lem in recent TLS implementations.The Bleichenbacher attack resurfaced in the JSSE
(Java Secure Socket Extension) SSL/TLS implementation [23]: by reusing standard
cryptographic libraries, the JSSE implementation has to rely on them to handle padding
errors, which generated a timing difference due to the use of exception. This example
shows again a dilemma between code reuse and security: it is impossible to safely reuse
standard PKCS#1 v1.5 libraries that throw exceptions. Actually, the attack keeps on
resurfacing, with two recent publications exploiting Bleichenbacher oracles and target-
ing TLS: ROBOT (Return Of Bleichenbacher’s Oracle Threats [10]), relying on new
signals from vulnerable state machines, and CAT (Cache-like ATtacks [25]).

It is thus clear that PKCS#1 v1.5 is inherently flawed, and, as with the MAC-then-
CBC scheme described earlier, developers will get it wrong, time and again, until this
obsolete mechanism is removed from the specification. In the mean time, it is crucial
to avoid reusing the same RSA key in different contexts (decryption and signature,
PKCS#1 v1.5 and v2.1), since a vulnerability in one context may indirectly be used to
attack the other (e.g. the DROWN attack [4]).

3.4 Lessons learned

We can expect three properties from applications involving cryptographic mechanisms:
security with regards to known attacks, compatibility with the existing ecosystem, and
code modularity (i.e. the ability to reuse and combine existing high-level primitives).
In practice, until old versions of TLS have disappeared, it seems difficult or even im-
possible to have the three properties at once. A developer must pick at most two out of
three:

– modularity and compatibility, which corresponds to using standard primitives with-
out specific countermeasures, leading to attacks such as Lucky 13;

– security and compatibility, which consists in rewriting large chunks of low-level
cryptographic code to add complex countermeasures. The resulting code is error-
prone and hard to maintain;

– security and modularity can be obtained by using only up-to-date robust crypto-
graphic constructions (e.g. AEAD modes), at the expense of a compatibility loss.
As history showed with Bleichenbacher attacks and CBC padding oracles, attacks

only get better over time: attacks originally considered as impractical later become ex-
ploitable. As the very purpose of cryptographic protocols is security, it seems to us that
the sensible approach is the third one, to only use sound algorithms and schemes to help

developers do their job without having to jump through improbable hoops: a good cryp-
tographic design should be easy to implement, in a modular and portable way, while not
allowing for dangerous combinations.

Hopefully, we are now in a situation where HTTP software can rely on modern
endpoints supporting at least TLS 1.2. Let us hope this situation expands to other TLS
ecosystems (we can cite the use of TLS in SMTP as an area where a huge progression
is still needed).

Protocol specification committees should thus listen to cryptographer’s advices, and
ban flawed algorithms or constructions as soon as possible. The problem with most
cryptographic flaws is not whether they are exploitable but when they will be.

TLS 1.3 benefits TLS 1.3 was designed with the best intentions, and no broken or
obsolete primitive has survived in the new version of the protocol.

On the symmetric front, the CBC mode and RC4 have disappeared, and only the
more modern AEAD constructions have been kept (AES-GCM and Chacha20-Poly1035).
Moreover, the nonce derivation is completely deterministic, which removes the possi-
bility for error in this area. Finally, after years of using ad-hoc key derivation func-
tions, TLS now uses HKDF, a clean and well-studied scheme proposed by Krawczyk in
2010 [16].

Regarding asymmetric primitives, RSA encryption is no longer used (which re-
moves the possibility of RSA-EXPORT-related attacks such as FREAK) and only signed
ephemeral Diffie-Hellman key exchange is possible with TLS 1.3. Moreover, the new
version of the protocol uses named groups with acceptable sizes (removing other small
key attacks such as LogJam [1]). Also, RSA signatures in TLS 1.3 use the Probabilistic
Signature Scheme, from the most recent version of the RSA standard (PKCS#1 v2.1).

TLS 1.3 only proposes up-to-date and robust cryptographic algorithms, which should
remove some worries from the developers’ mind. Strictly speaking, there is still one
area where legacy cryptography can be found in TLS 1.3: X.509 certificate manage-
ment (ECDSA certificates are still rare, while the vast majority of RSA certificates still
use the PKCS#1 v1.5 signature scheme). We can only hope that progress is made on
this front, which is not directly specified by TLS.

4 The consequences of complex state machines

Since 2014, several attacks concerning flaws in TLS state machine implementations
were published. Their impact can be catastrophic, either by skipping essential steps of
the protocol or by exposing rarely used parts of code. Such attacks demonstrate how
specification complexity can lead to security issues in implementations.

4.1 CVE-2014-0224: EarlyCCS

In June 2014, Kikushi showed that the OpenSSL state machine is vulnerable to a subtle
attack: a man-in-the-middle between an OpenSSL client and an OpenSSL server, both
vulnerable, could forge early ChangeCipherSpec messages and force the parties to

use weak keys, relying only on public data [14]. The precise cinematics are described
in appendix E.

The main idea behind this attack is to exploit the OpenSSL state machine that,
both as a client and a server, accepts an early ChangeCipherSpec message, instead
of discarding it and/or ending the negotiation. The real ChangeCipherSpec, which is
still required, will be ignored in practice. At reception time, since no shared secret is
defined yet, session keys are derived from a null secret and public random values. Next,
the attacker has to keep both connections in a consistent state, encrypting messages with
the weak keys and keeping track of record numbers to compute correct MAC values.

In the end, for the handshake to terminate successfully, the attacker has to send cor-
rect Finishedmessages to the client and to the server. Since this message must contain
a hash value covering, among other things, the shared secret that was eventually agreed
upon, the attacker needs both the client and the server to be vulnerable to complete the
handshake.

Actually, as stated in the author’s blog post, the corresponding code had already
been fixed several times to handle wrongly-ordered ChangeCipherSpec messages:
CVE-2004-0079 fixed a null-pointer assignment arising when the message was received
before the ciphersuite was specified, CVE-2009-1386 fixed a similar problem in DTLS.
Yet, only the direct consequence (a segmentation fault) was investigated in both cases,
leaving aside the bigger picture. The genuine flaw was ignored, as well as its security
consequences.

It is worth noting that ChangeCipherSpec is not a Handshake message, and as
such it is not hashed in the transcript covered by the Finished message. Thus, adding
or removing a ChangeCipherSpec cannot be detected by cryptographic means. Yet,
after being removed from the standard, the ChangeCipherSpec were reintroduced as
dummy messages in the late drafts of TLS 1.3, to accommodate so-called middleboxes.
Even though these messages are not supposed to have any meaning at all, this kind of
unnecessary redundancy might again lead to new issues in the years to come.

4.2 SMACK: State Machine AttaCKs

In January 2015, several vulnerabilities were published about various TLS implemen-
tations. Using FlexTLS, a flexible TLS stack, researchers tested the state machines of
many different TLS stacks [6]. The results were especially worrying since they affected
in practice all the known TLS stacks, to various degrees.

CVE-2014-6593: Early Finished (server impersonation). In the first described at-
tack, the attacker answers a vulnerable client with the following messages: ServerHello,
Certificate (with the identity of the server to impersonate) and Finished, and skips
the rest of the negotiation (including the ChangeCipherSpec message. Faced with
such a shortened handshake, JSSE (Java) and CyaSSL TLS implementations consider
the server authenticated and start sending cleartext ApplicationData messages!

Skip Verify (client impersonation) In the case of a mutually authenticated connection,
the server requests the client to present a certificate (using a Certificate message)

and to sign the current Handshake transcript with his private key (CertificateVerify).
Both these messages are required to properly authenticate the client. However, several
implementations accept the Certificate message alone, where the client announces
its identity, without the corresponding proof of identity: the Mono implementation in-
deed considers the second message as optional, but nevertheless authenticates the client;
with CyaSSL, the attacker also needs to skip the client ChangeCipherSpec message;
finally, with OpenSSL, the flaw is more subtle, since the attack only works when the
client presents a certificate containing a static Diffie-Hellman public key.

CVE-2015-0204: FREAK (Factoring RSA Export Keys) The last attack described
in the article is FREAK, which got some media coverage. As for the previous attacks,
FREAK relies on an active network attacker able to modify the messages on the fly.

The attack consists in forcing a client to use the RSA-EXPORT key exchange
method, which was designed to comply with cryptographic restrictions. In a nutshell,
with RSA-EXPORT, the server is authenticated using a strong RSA key, but the actual
key exchange is done using RSA encryption with a shorter RSA key (at most 512-bit
long), to respect the rules limiting the size of encryption keys.

Initially flagged as not critical for OpenSSL (which is rarely used as TLS client
stack on desktop computers), FREAK was discovered in practice to affect many dif-
ferent TLS clients beyond OpenSSL: BoringSSL, LibreSSL, Apple SecureTransport,
Microsoft SChannel, the Mono TLS stack and Oracle JSSE.

4.3 Black-box fuzzing to evaluate TLS state machines

In 2015, de Ruiter et al. described another approach to evaluate state machines in TLS
stacks [26]. They use state machine learning techniques to analyze different implemen-
tations as black boxes. To this aim, they choose an alphabet of abstract TLS messages
(typical Handshake messages, application data and Heartbeat messages). Thanks to a
software layer translating this abstract alphabet into concrete messages (the so-called
test harness), they could build the observable state automata of different implementa-
tions.

The expected automata should be a straightforward “happy flow”, showing the dif-
ferent steps of a successful TLS session, which should typically consist in 5 states, and
one more state to handle all the error cases. This is the observed behavior for the RSA
BSAFE Java library. The other studied libraries show more complex state machines.
Examples of inferred automata are reproduced from the article in the appendix G.

It is worth noting that, by studying the deviations of the implementations with re-
gards to the expected simple automata, the researchers have been able to find vulnerabil-
ities, including the Early Finished flaw described earlier. They also uncovered another
security bug in GnuTLS 3.3.8, where sending a Heartbeat message would reset the
buffer containing the handshake messages; this flaw could allow an attacker to mangle
a handshake between a vulnerable client and a vulnerable server.

4.4 Lessons learned

As shown with these examples, all major TLS implementations did not correctly keep
track of the current state a session is in, since they all accepted illegal messages in
at least one configuration. Ideally, the TLS state machine should be driven by its cur-
rent state only, not by the incoming messages: at each step, a client or a server should
exactly know which messages are valid, and every other messages should trigger an
UnexpectedMessage fatal alert. The best way to achieve this is to write simple and
crystal clear specifications in a formal language (instead of a natural one).

TLS 1.3 benefits When we study the state machines for TLS 1.3, the first remark we
have to make is that they are not formally defined in the RFC. Indeed, as stated earlier,
the IETF insists in letting the developers make their implementation choices, even if this
leads to them making avoidable mistakes. We strongly believe that sometimes, there is
a good way to implement a protocol, and more formal state machines could and should
have been provided in the specification.

That being said, if we consider vanilla TLS (that is TLS without 0 RTT nor Post-
Handshake Client Authentication), TLS 1.3 state machines are somewhat simpler that
the previous ones. This is obviously true for the automaton handling post handshake
traffic, since the only messages to handle are NewSessionTicket and KeyUpdatemes-
sages (which are very simple Handshake messages), and ApplicationData records.

For the first (and only) negotiation, a lot of the complexity has disappeared with the
removal of several features (renegotiation, the original mechanism to resume sessions).
However, during the last months of the review process, several fields and messages
were brought back to the specification, to accommodate so-called middleboxes. Indeed,
some network devices were shown to be intolerant to TLS 1.3, so the TLS working
group proposed to make TLS 1.3 look more like TLS 1.2, by adding useless fields in
the ServerHello message (compression methods, session identifiers) and by bringing
back the cursed ChangeCipherSpecmessage. We would obviously advocate to remove
this useless, unauthenticated and dangerous message, which already led to several flaws
in real stacks.

Another source of concern are the 0 RTT mode, which allow for an even more ef-
ficient protocol, at the expense of weaker security properties (e.g. regarding anti-replay
protection), and Post-Handshake Client Authentication, a feature allowing the server to
ask for client certificate authentication after the initial handshake has been completed.
Both mechanisms introduce an added complexity to the specification.

Overall, it is hard to tell what the exact track record of TLS 1.3 is with regards to
specification simplicity and clarity. If we restrict the protocol to what we called vanilla
TLS without ChangeCipherSpec, the net profit is rather clear to us. Yet, a lot of actors
will be tempted to use 0 RTT or compatibility messages to accommodate middleboxes,
making the profit less obvious.

5 Related work

Meyer et al. have proposed a comprehensive presentation of SSL/TLS flaws in 2013 [22],
which describes many security vulnerabilities affecting TLS, not only implementation
ones. At that time, the work on TLS 1.3 had not yet begun.

It is also worth mentionning the work of Bernstein et al. on developing a new cryp-
tographic library with a safe API [5]. We indeed believe complex specifications should
include implementation constraints to avoid known (and dangerous) traps.

Regarding test suites and tools, the situation has improved over the recent years,
with the publication of tools such as tlsfuzzer8 and TLS-Attacker9.

6 Conclusion

Development, network protocols, and cryptography are complex subjects. Implement-
ing a TLS stack combines all those, and as illustrated in the previous examples one may
encounter numerous flaws with critical security consequences.

In this article, we analyzed different implementation bugs in TLS stacks that led
to security flaws. We also offered ideas as to what could help the software community
produce more reliable tools.

There are huge classes of security flaws that rely on recurring trivial bugs such as
memory management errors or integer overflows. To overcome them, there already ex-
ists type-safe programming languages or static analysis tools to avoid introducing sev-
eral kinds of bugs in the first place. The attacks have also shown that the TLS ecosystem
lacked an extensive, shared set of security tests, since multiple flaws were discovered,
several years apart, in independent implementations of the protocol. Finally, several vul-
nerabilities result from the complexity and the ambiguities of the TLS specifications.

Overall, the situation has improved with TLS 1.3. At least from the cryptographic
point of view, TLS 1.3 represents significant advances, since it removes many cryp-
tographic algorithms (such as RC4, MD5 and to a lesser extent SHA-1), modes (CBC,
PKCS#1 v1.5) and parameters (arbitrary finite field group are replaced by properly sized
named groups for the Diffie-Hellman key exchange). Regarding the protocol specifica-
tion, the negotiation has been simplified, is more efficient, and has been proven secure...
unless we consider complex features such as 0 RTT.

Acknowledgments This work was supported in part by the French ANR GASP project
(ANR-19-CE39-0001).

8 https://github.com/tomato42/tlsfuzzer
9 https://github.com/RUB-NDS/TLS-Attacker

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman, J.A., Heninger,
N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wustrow, E., Zanella-Béguelin,
S., Zimmermann, P.: Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In:
Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Se-
curity, Denver, CO, USA, October 12-16, 2015. pp. 5–17 (Oct 2015)

2. Albrecht, M.R., Paterson, K.G.: Lucky Microseconds: A Timing Attack on Amazon’s s2n
Implementation of TLS. IACR Cryptology ePrint Archive (2015), http://eprint.iacr.
org/2015/1129

3. AlFardan, N.J., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS record proto-
cols. In: 2013 IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA. pp.
526–540 (May 2013)

4. Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J., Valenta, L.,
Adrian, D., Halderman, J.A., Dukhovni, V., Käsper, E., Cohney, S., Engels, S., Paar, C.,
Shavitt, Y.: DROWN: Breaking TLS with SSLv2. In: 25th USENIX Security Symposium,
Austin, Texas, USA (Aug 2016)

5. Bernstein, D.J., Lange, T., Schwabe, P.: The Security Impact of a New Cryptographic Li-
brary. In: Progress in Cryptology - LATINCRYPT 2012 - 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile. pp. 159–176 (Oct
2012)

6. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Pironti,
A., Strub, P., Zinzindohoue, J.K.: A messy state of the union: Taming the composite state
machines of TLS. In: 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA. pp. 535–552 (May 2015)

7. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.: Implementing TLS with
verified cryptographic security. In: 2013 IEEE Symposium on Security and Privacy, SP 2013,
Berkeley, CA, USA. pp. 445–459 (May 2013)

8. Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the rsa encryp-
tion standard pkcs #1. In: 18th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’98, Santa Barbara, CA, USA. pp. 1–12. Springer-Verlag (Aug 1998)

9. Bleichenbacher, D.: Rump session at CRYPTO ’06: Forging some RSA signatures with pen-
cil and paper. Transposed by Hal Finney on the IETF Web mailing list: https://www.
ietf.org/mail-archive/web/openpgp/current/msg00999.html (Aug 2006)

10. Böck, H., Somorovsky, J., Young, C.: Return of bleichenbacher’s oracle threat (ROBOT). In:
27th USENIX Security Symposium, USENIX Security 2018, Baltimore, MD, USA, August
15-17, 2018. pp. 817–849 (Aug 2018)

11. Böck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-Disrespecting Adver-
saries: Practical Forgery Attacks on GCM in TLS. In: 10th USENIX Workshop on Offensive
Technologies, WOOT’16, Austin, USA (Aug 2016)

12. Duong, T., Rizzo, J.: Here come the XOR ninjas. Ekoparty Security Conference (Sep 2011)
13. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver, N.,

Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of heartbleed. In: Proceedings
of the 2014 Internet Measurement Conference, IMC 2014, Vancouver, BC, Canada, Novem-
ber 5-7, 2014. pp. 475–488 (Nov 2014)

14. Kikuchi, M.: How I discovered CCS Injection Vulnerability (CVE-2014-0224).
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/

index.html (Jun 2014), http://ccsinjection.lepidum.co.jp/blog/2014-06-05/
CCS-Injection-en/index.html

15. Krawczyk, H.: The Order of Encryption and Authentication for Protecting Communications
(or: How Secure Is SSL?). In: Advances in Cryptology - CRYPTO 2001, 21st Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA. pp. 310–331 (Aug 2001)

16. Krawczyk, H.: Cryptographic extraction and key derivation: The HKDF scheme. In: Ad-
vances in Cryptology - CRYPTO 2010, 30th Annual Cryptology Conference, Santa Barbara,
CA, USA. pp. 631–648 (Aug 2010)

17. Labs, A.W.S.: s2n: an implementation of the TLS/SSL protocols. https://github.com/
awslabs/s2n (2015), https://github.com/awslabs/s2n

18. Langley, A.: Lucky Thirteen attack on TLS CBC. https://www.imperialviolet.org/
2013/02/04/luckythirteen.html (Feb 2013), https://www.imperialviolet.org/
2013/02/04/luckythirteen.html

19. Marlinspike, M.: Internet Explorer SSL Vulnerability. http://www.thoughtcrime.org/
ie-ssl-chain.txt (2002), http://www.thoughtcrime.org/ie-ssl-chain.txt

20. Marlinspike, M.: More Tricks For Defeating SSL In Practice (Jul 2009),
http://www.blackhat.com/presentations/bh-usa-09/MARLINSPIKE/

BHUSA09-Marlinspike-DefeatSSL-SLIDES.pdf

21. Marlinspike, M.: BasicConstraints Back Then. http://www.thoughtcrime.org/blog/
sslsniff-anniversary-edition/ (Jul 2011), http://www.thoughtcrime.org/
blog/sslsniff-anniversary-edition/

22. Meyer, C., Schwenk, J.: Sok: Lessons learned from SSL/TLS attacks. In: Kim, Y., Lee, H.,
Perrig, A. (eds.) Information Security Applications - 14th International Workshop, WISA
2013, Jeju Island, Korea, August 19-21, 2013, Revised Selected Papers. Lecture Notes in
Computer Science, vol. 8267, pp. 189–209. Springer (2013)

23. Meyer, C., Somorovsky, J., Weiss, E., Schwenk, J., Schinzel, S., Tews, E.: Revisiting SS-
L/TLS Implementations: New Bleichenbacher Side Channels and Attacks. In: Proceedings
of the 23rd USENIX Security Symposium, San Diego, CA, USA. pp. 733–748 (Aug 2014)

24. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed
Standard) (Aug 2018). https://doi.org/10.17487/RFC8446, https://www.rfc-editor.
org/rfc/rfc8446.txt

25. Ronen, E., Gillham, R., Genkin, D., Shamir, A., Wong, D., Yarom, Y.: The 9 Lives of Ble-
ichenbacher’s CAT: New Cache ATtacks on TLS Implementations. In: 40th IEEE Sympo-
sium on Security and Privacy, SP 2019, San Francisco, CA, USA (May 2019)

26. de Ruiter, J., Poll, E.: Protocol State Fuzzing of TLS Implementations. In: 24th USENIX
Security Symposium, Washington, D.C., USA. pp. 193–206 (Aug 2015)

A Apple’s goto fail vulnerable code

The following excerpt shows the vulnerable code, with the duplicated goto statement.

SSLVerifySignedServerKeyExchange(...) {
OSStatus err;

...

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)

goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

err = sslRawVerify(ctx, ctx->peerPubKey , dataToSign , signature);

...

fail:
SSLFreeBuffer(&signedHashes);
SSLFreeBuffer(&hashCtx);
return err;

}

B GnuTLS’ goto fail vulnerable code

The following listing is an extract from the vulnerable function in GnuTLS which re-
turns -1 in case gnutls x509 get signed data fails while parsing the data. It is
interesting to notice that this contradicts to the comments on top of the function.

/*
* Returns only 0 or 1. If 1 it means that the certificate
* was successfully verified. [...]
*/
static int _gnutls_verify_certificate2(...) {

...

result = _gnutls_x509_get_signed_data(...);
if (result < 0) {

gnutls_assert();
goto cleanup;

}

...

cleanup:
if (result >= 0 && func)

func(cert, issuer, NULL, out);
_gnutls_free_datum(&cert_signed_data);
_gnutls_free_datum(&cert_signature);

return result;
}

And here is typical site call of the vulnerable function, where only the ret == 0
condition (corresponding to an invalid signature) would lead to reject the certificate,
letting negative results be interpreted as good certificates.

ret = _gnutls_verify_certificate2(...);
if (ret == 0) {

/* if the last certificate in the certificate list is
* invalid, then the certificate is not trusted. */
gnutls_assert();
status |= output;
status |= GNUTLS_CERT_INVALID;
return status;

}

C Details on CVE-2014-1568: NSS/CyaSSL/PolarSSL Signature
Forgery

Within TLS, RSA signatures use the PKCS#1 v1.5 standard (it is also the standard com-
monly used in X.509 certificates, hence the ability to exploit the vulnerability anywhere
in the chain). To sign a message m with a private key (N, d) using the hash function H,
PKCS#1 v1.5 requires the following steps:

– Hash: compute h = H(m);
– Format: prepare an ASN.1 DER block encoding a sequence containing the identifier

of the used hash function and the hash value h. We denote by d this block, also
called DigestInfo;

– Pad: with n the length of the RSA modulus N, create an n-byte long octet string
starting with 00 01 ff ... ff 00, followed by d, where the number of ff bytes
is adjusted accordingly. Let x be the integer represented by this value (see figure 1);

– Sign: the final result is xd[N].
In 2006, Bleichenbacher proposed an attack to exploit broken RSA implementations

that did not check the absence of data beyond the DigestInfo block [9]. Figure 2
presents an incorrect message that could be accepted by such implementations. In the
case of a small public exponent (such as 3), it is easy to forge a signature for such a
message. Assuming an attacker wishes to forge a signature for a given DigestInfo
block, she can prepare a message m similar to the one presented in the figure, with a
small value for p10 and the garbage part filled with zeroes. Let s be the smallest integral
value greater than the real cubic root of the big integer represented by m. As soon as n
is big enough, s3 will only differ from m in the garbage part of the message, leaving the
DigestInfo part intact. With such a fuzzy implementation, it is thus possible to forge
an arbitrary signature for an RSA key using 3 as its public exponent.

The vulnerability exposed in September 2014 is subtler, since it relies on a non-
canonical DER representation. For example, instead of representing the SHA-1 hash
length by a simple byte (0x14), the attacker uses an alternative representation, which
should be forbidden in DER, XX 00 .. 00 14, with XX equal to 0x80 + l, the number
of bytes used to encode the length (here, the number of null bytes plus one).

Even if this lack of precision allows the attacker to mount an attack, it is still hard
to exploit in practice. There was actually another flaw in the DER parsing code: when
reading a very long length field (as the one described above), an integer overflow al-
lowed the attacker to use arbitrary values for all but the four bytes, which would lead

10 As a matter of fact, even if p is specified to be at least 8, some implementations allow the
padding to be empty (p = 0), which fives the attacker more wiggle room.

PKCS#1 v1.5 signature format:

←−−−−−−−−−−−−− n bytes −−−−−−−−−−−−−→

00 01 ff ... ff 00 DigestInfo

←− 8+ bytes −→

DigestInfo:

30 2D ←−−→

30 09 ←−−−−−−−−−−−−−−−−−−−−−−−−→ 04 20 <hash>
06 05 <idS HA256> 05 00

Seq. Seq. Hash algorithm and params Hash value

Fig. 1. PKCS#1 v1.5 signature format. Seq. are ASN.1 sequences, length are represented in italic,
and <hash> is the hash value of the message to sign (here using SHA-256).

←−−−−−−−−−−−−−−−− n bytes −−−−−−−−−−−−−−−−→

00 01 ff ... ff 00 DigestInfo garbage
←− p bytes −→

Fig. 2. Example of a malformed PKCS#1 v1.5 message. With a liberal parser, messages of this
form will be accepted, which leads to a Universal signature forgery attack.

Valid DER 04 20 <hash>

Type Len. Value

Non-canonical length 04 ff 00 ... 00 20 <hash>

←−−−127 bytes −−−→
Type ←−−−−−−−Length −−−−−−−→ Value

Non-canonical length 04 ff XX ... XX 00 00 00 20 <hash>

+ 32-bit integer overflow ←−−−−−−−−−−127 bytes −−−−−−−−−−→
Type ←−−−−−−−−−−−−−−Length −−−−−−−−−−−−−−→ Value

Fig. 3. Example of a subtler malformed PKCS#1 v1.5 message, which was accepted by many
implementations in 2014. In the ASN.1 DER part of the message describing the hash value, the
length field can be mangled and still be accepted. In the third case, because of the integer overflow,
XX can be chosen arbitrarily by the attacker. Of course, the rest of the DigestInfo must be built
accordingly.

to a length field of the form XX YY .. YY 00 00 00 14, where YY is a sequence of
l − 4 bytes controlled by the attacker.

Figure 3 shows an example of message targeted by this attack with a 1024-bit mod-
ulus (since the XX only allows for a 7 bit-long length field, the attack is more complex
and requires splitting the target in more pieces with 2048-bit moduli). As in the orig-
inal Bleichenbacher attack against PKCS#1 v1.5 signature forgery attack, the public
exponent must be equal to 3 for the attack to succeed in practice.

D Details on Bleichenbacher’s attack against PKCS#1 v1.5
encryption

Figure 4 describes the expected format for the structure to be encrypted with PKCS#1 v1.5.
A correctly padded plaintext thus starts with 00 02, which corresponds to a big integer
between 2 × 2n−16 and 3 × 2n−16 (with an n-bit modulus).

PKCS#1 v1.5 encryption format:

←−−−−−−−−−−−−−−−−−−−− n bytes −−−−−−−−−−−−−−−−−−−−→

00 02 random 00 Data to encrypt

←− 8+ bytes −→

Fig. 4. A valid PKCS#1 v1.5 encrypted message: the padding must contain at least 8 non-null
random bytes.

E EarlyCCS attack cinematics

Figure 5 describes how the EarlyCCS attack can be mounted between a client and a
server that are both vulnerable.

Indeed, even if the secret used to protect records after the ChangeCipherSpecmes-
sages is known to the attacker, the legitimate parties still properly derive the contents of
the Finished messages, which is still secure and out of reach of the attacker.

F FREAK attack cinematics

The FREAK scenario, as presented in Figure 6, is the following:
– First the attacker A finds a server S accepting RSA-EXPORT ciphersuites, and

using the same short-term RSA-512 key across sessions. Many TLS servers still
accept to negotiate RSA-EXPORT ciphersuites, and even reuse the same short-term
RSA-EXPORT key until they reboot11.

11 Even if the short-term RSA should ideally be ephemeral, generating even a small RSA key
on the fly is still considered a costly operation. RSA-EXPORT implementations thus usually
cache the short-term RSA key for a certain amount of time, typically between one hour and
forever.

Client Attacker Server
ClientHello)

ServerHello

CCS

Secrets:
msweak, keysweak

Certificate

Certificate (SNA−C = 0)
ServerHelloDone

ServerHelloDone (SNA−C = 1)

Secrets:
msstrong, keysweak

CCS

Secrets:
msweak, keysweakClientKeyExchange ClientKeyExchange (SNA−S = 0)

Secrets:
msstrong, keysweak

CCSClient Finished (SNC−A = 0) Client Finished (SNA−S = 1)

CCS

CCS (SNA−C = 2)
Client Finished (SNS−A = 0)

Client Finished (SNA−C = 0)

Application data (SNC−A = n) Application data (SNA−S = n + 1)

Application data (SNS−A = n)Application data (SNA−C = n)

Fig. 5. EarlyCCS attack cinematics. ms stands for master secret and S NXX corresponds to the
number of sent record. The attacker needs to keep track of four such numbers: between the client
and the attacker and between the attacker and the server (with a counter for each direction).

Client Attacker Server
ClientHello (kx=RSA)) ClientHello (kx=RSA Export)

?
ServerHello (kx=RSA Export)

ServerHello (kx=RSA) Certificate

Certificate ServerKeyExchange

ServerKeyExchange
ServerHelloDone

ServerHelloDone

? ClientKeyExchangeChangeCipherSpec
Finished

?
ChangeCipherSpec

Finished

Application data

Cleartext

Ciphertext

Fig. 6. FREAK attack. Key steps are in red: Hello message mangling, server support for EXPORT
ciphersuite, client tolerance to an unsolicited EXPORT-specific message, and the ability of the
attacker to decrypt the ClientKeyExchange (which depends on a reused weak RSA key).

– A factors the RSA-512 modulus (it takes several hours with a reasonable budget) to
get the private key;

– A leads a man-in-the-middle attack between a vulnerable client C and S , forces
the client to negotiate an RSA key exchange while fooling the server into using an
RSA-EXPORT ciphersuite. Several TLS clients indeed accept a ServerKeyExchange
message containing a short-term weak RSA key, which should only appear with an
RSA-EXPORT ciphersuite, whereas a standard RSA encryption key exchange had
been negotiated

– A then hands over the following messages until the ServerHelloDone;
– A receives the ClientKeyExchange she is able to decrypt with the weak private

key;
– finally, A answers directly to C on behalf of S for the rest of the session.

G Examples of automata inferred from TLS implementations

Figure 7 describes the automaton for the BSAFE implementation and Figure 8 the one
for GnuTLS.

Figure 6: Learned state machine model for RSA BSAFE for Java 6.1.1

4.7 Network Security Services

The model for NSS that was learned for version 3.17.4
looks pretty clean, although there is one more state than
one would expect. There is only one path leading to a
successful exchange of application data. In general all
messages received in states where they are not expected
are responded to with a fatal alert (‘Unexpected mes-
sage’). Exceptions to this are the Finished and Heart-
beat messages: these are ignored and the connection
is closed without any alert. Other exceptions are non-
handshake messages sent before the first ClientHello:
then the server goes into a state where the connection
stays open but nothing happens anymore. Although the
TLS specification does not explicitly specify what to
do in this case, one would expect the connection to be
closed, especially since it’s not possible to recover from
this. Because the connection is not actually closed in this
case the analysis takes longer, as we have less advantage
of our modification of the W-method to decide equiva-
lence.

4.8 OpenSSL

Fig. 7 shows the model inferred for OpenSSL 1.01j. In
the first run of the analysis it turned out that Heartbeat-
Request message sent during the handshake phase were
‘saved up’ and only responded to after the handshake
phase was finished. As this results in infinite models we
had to remove the heartbeat messages from the input al-
phabet. This model obtained contains quite a few more
states than expected, but does only contain one path to
successfully exchange application data.

The model shows that it is possible to start by sending
two ClientHello messages, but not more. After the sec-
ond ClientHello message there is no path to a successful
exchange of application data in the model. This is due
to the fact that OpenSSL resets the buffer containing the
handshake messages every time when sending a Client-

Hello, whereas our test harness does this only on initial-
isation of the connection. Therefore, the hash computed
by our test harness at the end of the handshake is not ac-
cepted and the Finished message in state 9 is responded
to with an alert. Which messages are included in the hash
differs per implementation: for JSSE all handshake mes-
sages since the beginning of the connection are included.

Re-using keys In state 8 we see some unexpected be-
haviour. After successfully completing a handshake, it is
possible to send an additional ChangeCipherSpec mes-
sage after which all messages are responded to with a
‘Bad record MAC’ alert. This usually is an indication of
wrong keys being used. Closer inspection revealed that
at this point OpenSSL changes the keys that the client
uses to encrypt and MAC messages to the server keys.
This means that in both directions the same keys are used
from this point.

We observed the following behaviour after the addi-
tional ChangeCipherSpec message. First, OpenSSL ex-
pects a ClientHello message (instead of a Finished mes-
sage as one would expect). This ClientHello is responded
to with the ServerHello, ChangeCipherSpec and Fin-
ished messages. OpenSSL does change the server keys
then, but does not use the new randoms from the Client-
Hello and ServerHello to compute new keys. Instead the
old keys are used and the cipher is thus basically reset
(i.e. the original IVs are set and the MAC counter reset
to 0). After receiving the ClientHello message, the server
does expect the Finished message, which contains the
keyed hash over the messages since the second Client-
Hello and does make use of the new client and server
randoms. After this, application data can be send over
the connection, where the same keys are used in both di-
rections. The issue was reported to the OpenSSL team
and was fixed in version 1.0.1k.

10

Fig. 7. Observable state automata of the RSA BSAFE JAVA stack (version 6.1.1). 5 states clearly
form the expected “happy flow”, while the 2 state is the error state, where all invalid sessions
eventually end. Source: [26].

Figure 2: Learned state machine model for GnuTLS 3.3.8

Figure 3: Learned state machine model for GnuTLS 3.3.12. A comparison with the model for GnuTLS 3.3.8 in Fig. 2
shows that the superflous states (8, 9, 10, and 11) are now gone, confirming that the code has been improved.

6

Fig. 8. Observable state automata of GNU TLS 3.3.8. This time, the automata contains 12 states.
In particular, states 8 to 10 form a shadow flow, where a Heartbeat message has led to a buffer
reset. Source: [26].

