
TLS Record Protocol: Security Analysis and
Defense-in-depth Countermeasures for HTTPS

Olivier Levillain, Baptiste Gourdin, Hervé Debar

ANSSI, Sekoia, Télécom SudParis

ASIACCS 2015

Levillain, Gourdin, Debar (ASIACCS) TLS Record Protocol Security Analysis and Countermeasures 1 / 31



TLS in a nutshell
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Two phases
I secure channel establishment

I algorithm negotiation
I server authentication
I key exchange to obtain a shared secret

I application data exchanges using this
channel

This talk focuses on the second phase, the Record Protocol
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TLS Record Protocol
After the handshake, records can be protected using 3 different schemes:

  
Stream cipher mode

Plaintext P

Compressed C

C MAC

Authenticated and
Encrypted record

|P| < 214

|C| < |P| + 1024

Compression    (optional)      

MAC'ed then
Encrypted record

MAC'ed then Padded
then Encrypted record

C MACC MAC
P
a
d

Encryption     (XOR)      

C MAC

Padding                  

Encryption     (CBC)       

CBC mode

MAC MAC

AEAD     step

AEAD mode
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Well, all started... in 2011

I 2011 : BEAST
I CBC mode with implicit IV

I 2012 : CRIME (followed by TIME and BREACH)
I Compression attacks

I 2013 - 2014 : Lucky13 (followed by POODLE)
I CBC Padding Attacks

I 2014 : RC4 biases (no real name)
I RC4 statistical biases
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The cookie monsters

I BEAST, TIME, CRIME, BREACH, Lucky13, POODLE, RC4 biases,
...

I all the PoCs went after cookies
I all relies on having the cookie repeated inside the TLS channel
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Model

Web Application
(PHP, Python, NodeJS, …)

(Django, ...)

Web Server
HTTP + SSL/TLS

(Apache2, IIS, Nginx)

Web Client
(Chrome, Firefox, IE, ...)

Application
page

Session Cookie
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RFC6265: HTTP State Management Mechanism

Server
Web

application

   Set-Cookie: session_id=C564A5F3EB;
               httponly;secure

Cookie: session_id=C564A5F3EB

setcookie('session_id',
'C564A5F3EB', httponly,
secure)

$_COOKIE['session_id']
contains 'C564A5F3EB'

Client

$_COOKIE['session_id']
contains 'C564A5F3EB'

Cookie: session_id=C564A5F3EB $_COOKIE['session_id']
contains 'C564A5F3EB'
$_COOKIE['session_id']
contains 'C564A5F3EB'
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Attacker Model

Web Application
(PHP, Python, NodeJS, …)

(Django, ...)

Web Server
HTTP + SSL/TLS

(Apache2, IIS, Nginx)

Web Client
(Chrome, Firefox, IE, ...)

Application
page

Attacker
Page

Attacker
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Summary of the proposed countermeasures
Countermeasures Beast L 13 RC4 *IME POODLE

Structural changes to TLS
Use TLS 1.0 +
Use TLS 1.1 + +
Encrypt-then-MAC +
Changes related to TLS ciphersuites or compression methods
Use CBC mode +
Use RC4 + + +
Use a new stream cipher + + + +
Use AEAD (TLS 1.2) + + + +
No TLS compression +
Changes related to TLS implementations
1/n − 1 split +
Constant-time CBC +
Anti poodle splitting +
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Summary

I Since 2011, seven attacks affecting the Record Protocol

I Generally, each attack has been thwarted using a specific fix
I TLS 1.2 with AEAD suites offer a clean fix for most attacks

I But ... TLS 1.2 is not implemented everywhere
I But ... Older versions still supported

I A common denominator: all PoCs target repeated secrets
I cookies or anti-CSRF tokens

I What if we could avoid this repetition ?
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First-order attacks

Considered attacks: for each encrypted record, the attacker can retrieve
some information about κ consecutive bytes of plaintext

I Typically, κ = 1 and the attacker can check whether a cleartext byte
is equal to a guessed value (e.g. Lucky13)

I Sometimes, the attacker must aggregate information resulting from
several records (e.g. RC4 biases)

I Even if it can be raised, κ is at most 4 in realistic scenarios

I Such attacks can be called first-order attacks
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The Masking Principle

As for the term first-order attacks, we borrow from the side-channel
attacks litterature the masking principle.

I Each time a secret s of κ bytes must be transmitted
I Pick a random value m (the mask) of the same length
I Send the pair (m,m ⊕ s)

I Thus, the value can trivially be recomputed
I But the representation on the wire is different for every message

I Since the attacker can only recover information about κ consecutive
bytes for each record, she only obtains random data
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Masking the TLS layer

Stream cipher mode

Plaintext P

Compressed C

C MAC

Authenticated and
Encrypted record

|P| < 214

|C| < |P| + 1024

Compression    (optional)      

MAC'ed then
Encrypted record

MAC'ed then Padded
then Encrypted record

C MACC MAC
P
a
d

Encryption     (XOR)      

C MAC

Padding                  

Encryption     (CBC)       

CBC mode

MAC MAC

AEAD     step

AEAD mode
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Masking the TLS layer
I In practice, TLS Compression layer allows almost any reversible

transformation of the plaintext

  

r1 r2 r3 r4 r5

m m m m m m

c1 c2 c3 c4 c5m

Random

Compressed Record

=

Record

I This toy implementation does not follow the principle edicted before,
since the whole record is masked, not just the secret
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Implementation

OpenSSL implementation
I New compression method : scramble
I 75-line patch to add the scramble method
I Mask length is set to 8
I Some minor patches needed to add scramble support into s_client

and s_server

I CPU and network bandwidth are negligible
I In practice, compression is now obsolete in TLS, so deploying a new

compression method is irrelevant
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Security analysis

I The first BEAST proof of concept used WebSockets
I It was thwarted when 4-byte masking was introduced to avoid some

confusion attacks

I TLS scrambling would thus thwart BEAST
I It should also work against Lucky 13, RC4 single-byte biases and

POODLE

I Yet, it does not only mask the secrets, so some attacks still work
(e.g.: application-level compression)

I It should only be considered as a toy implementation
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Masking at the HTTP Layer

Web Application
(PHP, Python, NodeJS, …)

(Django, ...)

Web Server          
HTTP + SSL/TLS          

(Apache2, IIS, Nginx)         

Web Client
(Chrome, Firefox, IE, ...)

Application
page

Attacker
Page

Attacker

Session Cookie
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RFC6265: HTTP State Management Mechanism

Server
Web

application

   Set-Cookie: session_id=C564A5F3EB;
               httponly;secure

Cookie: session_id=C564A5F3EB

setcookie('session_id',
'C564A5F3EB', httponly,
secure)

$_COOKIE['session_id']
contains 'C564A5F3EB'

Client

$_COOKIE['session_id']
contains 'C564A5F3EB'

Cookie: session_id=C564A5F3EB $_COOKIE['session_id']
contains 'C564A5F3EB'
$_COOKIE['session_id']
contains 'C564A5F3EB'
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MCookies

I Objective: use a random mask for each sent cookie
I Targets: secure & httpOnly cookies
I How: for each server response, send a fresh pair (m,m ⊕ c)
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MCookies

Server
Web

application

Set-Cookie: session_id=5437624523:9153c7b6c8;
            httponly;secure

setcookie('session_id',
'C564A5F3EB', httponly,
secure)

Client
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Web

application
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Cookie: session_id=5437624523:9153c7b6c8

setcookie('session_id',
'C564A5F3EB', httponly,
secure)

$_COOKIE['session_id']
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Client

Set-Cookie: session_id=cb06ae36cc:0e620bc527;
            httponly;secure

Levillain, Gourdin, Debar (ASIACCS) TLS Record Protocol Security Analysis and Countermeasures 20 / 31



MCookies

Server
Web

application

Set-Cookie: session_id=5437624523:9153c7b6c8;
            httponly;secure

Cookie: session_id=5437624523:9153c7b6c8

setcookie('session_id',
'C564A5F3EB', httponly,
secure)

$_COOKIE['session_id']
contains 'C564A5F3EB'

Client

Cookie: session_id=cb06ae36cc:0e620bc527 $_COOKIE['session_id']
contains 'C564A5F3EB'

Set-Cookie: session_id=974113a1ce:5225b65225;
            httponly;secure

Set-Cookie: session_id=cb06ae36cc:0e620bc527;
            httponly;secure

Levillain, Gourdin, Debar (ASIACCS) TLS Record Protocol Security Analysis and Countermeasures 20 / 31



Implementation

I Implemented as a simple Apache2 module (500 loc)
I a2enmod mcookies is enough
I Works with sequential requests
I Works with parallel requests

I However some cookies attributes are lost in the process
I (Expires, Max-Age, Domain, Path)
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Implementation

I Expiration attribute is client side
I Session expiration should always be done server side.
I Fix 1: Add theses attributes to the MCookie

I Server response: (m:m ⊕ v:a)
I Client request: (m:m ⊕ v:a)

I Fix 2: Configure the Apache module
I vim /etc/apache2/mods-enabled/...
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Experiment

I Result: it works but it forces the server to re-emit a cookie each time
I Overhead ?
I Experiment scenario

I Simulate an active user browsing internet services
I Dump the HTTP traffic
I Emulate the same traffic using MCookies for each Secure+httpOnly

cookie

Traffic type Raw volume Overhead Overh. optim.
Sensitive 24 MB +20.1 % +14.9 %
Overall 122 MB +4.1 % +3.0 %

Table: Experiment result
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What if the browser could handle the masking ?

Web Application
(PHP, Python, NodeJS, …)

(Django, ...)

      Web Client
            (Chrome, Firefox, IE, ...)

Application
page

Attacker
Page

Attacker

Web Server          
HTTP + SSL/TLS          

(Apache2, IIS, Nginx)         Session Cookie
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Masked-Cookies

Idea:
I The server can specify which cookies to protect
I The browser now sends a fresh (m,m ⊕ v) with each request.
I No more overhead.

Proposal:
I masked attribute:

I Set-Cookie: cookie=val;secure;httponly;masked
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Masked-Cookies

Server
Web

application

Set-Cookie: session_id=5437624523:9153c7b6c8;
            httponly;secure;masked

setcookie('session_id',
'C564A5F3EB', httponly,
secure)

Client
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Masked-Cookies

Server
Web

application

Set-Cookie: session_id=5437624523:9153c7b6c8;
            httponly;secure;masked

Masked-Cookie: session_id=5437624523:9153c7b6c8

setcookie('session_id',
'C564A5F3EB', httponly,
secure)

$_COOKIE['session_id']
contains 'C564A5F3EB'

Client

Masked-Cookie: session_id=cb06ae36cc:0e620bc527 $_COOKIE['session_id']
contains 'C564A5F3EB'
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Implementation

I Implemented as a simple Apache2 module (500 loc)
I and a patch for chromium. (200 loc)

I Works with sequential requests
I Works with parallel requests
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MCookies Vs Masked-Cookies

I Same experiment scenario

Raw Extra bandwidth
Traffic traffic w/o UA support with UA
type volume naive optim. support

Sensitive 24 MB +20.1 % +14.9 % +10.8 %
Overall 122 MB +4.1 % +3.0 % +2.2 %

Table: Network overhead evalulation
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MCookies Vs Masked-Cookies

I CPU Overhead ?

MCookies enabled
Vanilla w/o UA with UA
server support support

Static page 384 318 (-17 %) 382
Wordpress page 221 212 (-4 %) 220

Table: Performance results (transactions/second)
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Summary

I Recent attacks on TLS Record Protocol rely on a repeated secret

I Our proposal to implement defense-in-depth: break this repetition
I MCookies and Masked Cookies can be implemented and work
I POODLE validated our approach

I Yet, secret randomization is a palliative countermeasure, not the
ultimate fix

I MCookies should be useful as a defense-in-depth countermeasure,
to get some time to patch
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Questions

Questions?

Thank you for your attention
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Questions

Some history

I 1994: Netscape publishes SSLv2 (https:// is born)
I 1995: Netscape publishes SSLv3, which fixes major flaws
I 1999: TLS 1.0 (aka SSLv3.1) is standardised by the IETF
I 2006: TLS 1.1 fixes bugs in CBC mode and updates ciphersuites
I 2008: TLS 1.2 introduces modern cryptographic modes
I 2015 (?): TLS 1.3 is coming

SSLv2 hopefully is history: this talk is about SSLv3 - TLS
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Questions

CBC mode with implicit IV

I Attack name: BEAST
I Authors: Rogaway (theoretic), Duong and Rizzo (practical attack)
I Date: 1995 (theoretic), 2011 (practical attack)
I Hypotheses and prerequisites:

I the TLS connection uses CBC with an implicit IV
I the ciphertext is observable
I the plaintext is partially controlled, adaptively
I the same secret is repeated in different connections

I Ideal fix: use TLS 1.1 (explicit IV)
I Common fix: split records to randomize IV in practice
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Questions

Compression attacks

I Attack name: CRIME (followed by TIME and BREACH)
I Authors: Duong and Rizzo
I Date: 2012 (practical attack)
I Hypotheses and prerequisites:

I a form of compression is enabled (TLS or HTTP)
I the ciphertext length is observable (packet size or timing difference)
I plaintext can be loosely controlled
I the same secret is repeated in different connections

I Ideal fix: avoid mixing attacker-controlled data and secrets
I Common fix: disable compression
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Questions

CBC Padding Attacks

I Attack name: Lucky13 (followed by POODLE)
I Authors: Vaudenay (theoretic), AlFardan et al. (Lucky13) and

Moeller et al. (POODLE)
I Date: 2002 (theoretic), 2013-2014 (practical attack)
I Hypotheses and prerequisites:

I the connection uses CBC
I the decryption process leaks information (Lucky13), or
I the decryption uses SSLv3-style padding (POODLE)
I the attacker can intercept and modify network packets
I the same secret is repeated in different connections

I Ideal fix: use Encrypt-then-Mac or proper authenticated encryption
I Common fix (Lucky13): implement constant-time CBC decryption
I Common fix (POODLE): get rid of SSLv3
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Questions

RC4 statistical biases

I Attack name: RC4 biases (no real name)
I Authors: AlFardan et al. (practical attack)
I Date: 2014
I Hypotheses and prerequisites:

I RC4 is used to encrypt data
I the ciphertext is observable
I the same secret is repeated in different connections

I Ideal fix: ban RC4
I Common fix: ban RC4 when possible
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