TLS Record Protocol: Security Analysis and Defense-in-depth Countermeasures for HTTPS

Olivier Levillain, Baptiste Gourdin, Hervé Debar

ANSSI, Sekoia, Télécom SudParis

ASIACCS 2015

TLS in a nutshell

Two phases

- secure channel establishment
 - algorithm negotiation
 - server authentication
 - key exchange to obtain a shared secret
- application data exchanges using this channel

TLS in a nutshell

Two phases

- secure channel establishment
 - algorithm negotiation
 - server authentication
 - key exchange to obtain a shared secret
- application data exchanges using this channel

This talk focuses on the second phase, the Record Protocol

TLS Record Protocol

After the handshake, records can be protected using 3 different schemes:

Well, all started... in 2011

- ▶ 2011 : BEAST
 - CBC mode with implicit IV
- ▶ 2012 : CRIME (followed by TIME and BREACH)
 - Compression attacks
- 2013 2014 : Lucky13 (followed by POODLE)
 - CBC Padding Attacks
- 2014 : RC4 biases (no real name)
 - RC4 statistical biases

The cookie monsters

▶ BEAST, TIME, CRIME, BREACH, Lucky13, POODLE, RC4 biases,

- all the PoCs went after cookies
- ▶ all relies on having the cookie repeated inside the TLS channel

Model

RFC6265: HTTP State Management Mechanism

Attacker Model

Countermeasures	Beast	L 13	RC4	*IME	POODLE		
Structural changes to T	LS						
Use TLS 1.0					+		
Use TLS 1.1	+				+		
Encrypt-then-MAC		+					
Changes related to TLS ciphersuites or compression methods							
Use CBC mode			+				
Use RC4	+	+			+		
Use a new stream cipher	+	+	+		+		
Use AEAD (TLS 1.2)	+	+	+		+		
No TLS compression				+			
Changes related to TLS	implem	entatio	ns	I			
1/n-1 split	+						
Constant-time CBC		+					
Anti poodle splitting					+		

Beast	L 13	RC4	*IME	POODLE			
LS							
				+			
+				+			
	+						
Changes related to TLS ciphersuites or compression methods							
		+					
+	+			+			
+	+	+		+			
+	+	+		+			
			+				
implem	entatio	ns					
+							
	+						
		∢ □	· (8) · (8)	→ 4 분 + 분 9			
	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	+ + + + + + + + + + + + + + + + + + +	Ciphersuites or compression residence of the second re			

Countermeasures	Beast	L 13	RC4	*IME	POODLE		
Structural changes to T	LS						
Use TLS 1.0					+		
Use TLS 1.1	+				+		
Encrypt-then-MAC		+					
Changes related to TLS ciphersuites or compression methods							
Use CBC mode			+				
Use RC4	+	+			+		
Use a new stream cipher	+	+	+		+		
Use AEAD (TLS 1.2)	+	+	+		+		
No TLS compression				+			
Changes related to TLS	implem	entatio	ns				
1/n-1 split	+						
Constant-time CBC		+					
Anti poodle splitting	Cord Protocol S	ocurity Analy	l		▶ 4 를 나 를 ∽		

Co	ountermeasures	Beast	L 13	RC4	*IME	POODLE			
Struc	Structural changes to TLS								
Use T	TLS 1.0					+			
Use T	TLS 1.1	+				+			
Encry	pt-then-MAC		+						
Chan	Changes related to TLS ciphersuites or compression methods								
Use C	CBC mode			+					
Use F	RC4	+	+			+			
Use a	new stream cipher	+	+	+		+			
Use A	AEAD (TLS 1.2)	+	+	+		+			
No T	LS compression				+				
Chan	ges related to TLS	implem	entatio	ns	1				
1/n –	- 1 split	+							
Const	ant-time CBC		+						
	poodle splitting			∢ □	· (4) · (3)	> 4 E + E 9			
Chan 1/n - Const	ges related to TLS - 1 split cant-time CBC poodle splitting	implem +	+	4 □		> < 100 + 100			

Countermeasures	Beast	L 13	RC4	*IME	POODLE		
Structural changes to T	LS						
Use TLS 1.0					+		
Use TLS 1.1	+				+		
Encrypt-then-MAC		+					
Changes related to TLS ciphersuites or compression methods							
Use CBC mode			+				
Use RC4	+	+			+		
Use a new stream cipher	+	+	+		+		
Use AEAD (TLS 1.2)	+	+	+		+		
No TLS compression				+			
Changes related to TLS	implem	entatio	ns				
1/n-1 split	+						
Constant-time CBC		+					
Anti poodle splitting			 		► 4 E + E 9		

Countermeasures	Beast	L 13	RC4	*IME	POODLE	
Structural changes to T	LS					
Use TLS 1.0					+	
Use TLS 1.1	+				+	
Encrypt-then-MAC		+				
Changes related to TLS ciphersuites or compression methods						
Use CBC mode			+			
Use RC4	+	+			+	
Use a new stream cipher	+	+	+		+	
Use AEAD (TLS 1.2)	+	+	+		+	
No TLS compression				+		
Changes related to TLS	implem	entatio	ns		<u> </u>	
1/n-1 split	+					
Constant-time CBC		+				
Anti poodle splitting	ecord Protocol S		 		→ 4 = + = 9	

Countermeasures	Beast	L 13	RC4	*IME	POODLE	
Structural changes to T	LS					
Use TLS 1.0					+	
Use TLS 1.1	+				+	
Encrypt-then-MAC		+				
Changes related to TLS ciphersuites or compression methods						
Use CBC mode			+			
Use RC4	+	+			+	
Use a new stream cipher	+	+	+		+	
Use AEAD (TLS 1.2)	+	+	+		+	
No TLS compression				+		
Changes related to TLS	implem	entatio	ns	1		
1/n-1 split	+					
Constant-time CBC		+				
Anti poodle splitting			∢ □	> 4 🗗 > 4 🖹		

Countermeasures	Beast	L 13	RC4	*IME	POODLE	
Structural changes to T	LS					
Use TLS 1.0					+	
Use TLS 1.1	+				+	
Encrypt-then-MAC		+				
Changes related to TLS ciphersuites or compression methods						
Use CBC mode			+			
Use RC4	+	+			+	
Use a new stream cipher	+	+	+		+	
Use AEAD (TLS 1.2)	+	+	+		+	
No TLS compression				+		
Changes related to TLS	implem	entatio	ns			
1/n-1 split	+					
Constant-time CBC		+				
Anti poodle splitting	cord Protocol S		 		→ 4 = + = 9	

Countermeasures	Beast	L 13	RC4	*IME	POODLE		
Structural changes to T	LS						
Use TLS 1.0					+		
Use TLS 1.1	+				+		
Encrypt-then-MAC		+					
Changes related to TLS ciphersuites or compression methods							
Use CBC mode			+				
Use RC4	+	+			+		
Use a new stream cipher	+	+	+		+		
Use AEAD (TLS 1.2)	+	+	+		+		
No TLS compression				+			
Changes related to TLS	implem	entatio	ns				
1/n-1 split	+						
Constant-time CBC		+					
Anti poodle splitting			∢ □	> 4 🗗 > 4 🖹	→ 4 를 \ = 9		

Countermeasures	Beast	L 13	RC4	*IME	POODLE		
Structural changes to T	LS						
Use TLS 1.0					+		
Use TLS 1.1	+				+		
Encrypt-then-MAC		+					
Changes related to TLS ciphersuites or compression methods							
Use CBC mode			+				
Use RC4	+	+			+		
Use a new stream cipher	+	+	+		+		
Use AEAD (TLS 1.2)	+	+	+		+		
No TLS compression				+			
Changes related to TLS	implem	entatio	ns	1			
1/n-1 split	+						
Constant-time CBC		+					
Anti poodle splitting			∢ □	• 4 🗗 ▶ ◀ 🛢	> < ≣ 		

▶ Since 2011, seven attacks affecting the Record Protocol

- ► Since 2011, seven attacks affecting the Record Protocol
- ► Generally, each attack has been thwarted using a **specific fix**

- ▶ Since 2011, seven attacks affecting the Record Protocol
- Generally, each attack has been thwarted using a specific fix
- ▶ TLS 1.2 with AEAD suites offer a clean fix for most attacks
 - ▶ **But** ... TLS 1.2 is not implemented everywhere
 - But ... Older versions still supported

- ▶ Since 2011, seven attacks affecting the Record Protocol
- Generally, each attack has been thwarted using a specific fix
- ▶ TLS 1.2 with AEAD suites offer a clean fix for most attacks
 - ▶ But ... TLS 1.2 is not implemented everywhere
 - But ... Older versions still supported
- ▶ A common denominator: all PoCs target **repeated secrets**
 - cookies or anti-CSRF tokens

- ▶ Since 2011, seven attacks affecting the Record Protocol
- Generally, each attack has been thwarted using a specific fix
- ▶ TLS 1.2 with AEAD suites offer a clean fix for most attacks
 - ▶ But ... TLS 1.2 is not implemented everywhere
 - ▶ But ... Older versions still supported
- ▶ A common denominator: all PoCs target **repeated secrets**
 - cookies or anti-CSRF tokens
- What if we could avoid this repetition ?

First-order attacks

Considered attacks: for each encrypted record, the attacker can retrieve some information about κ consecutive bytes of plaintext

- ightharpoonup Typically, $\kappa=1$ and the attacker can check whether a cleartext byte is equal to a guessed value (e.g. Lucky13)
- Sometimes, the attacker must aggregate information resulting from several records (e.g. RC4 biases)
- \triangleright Even if it can be raised. κ is at most 4 in realistic scenarios
- Such attacks can be called first-order attacks

The Masking Principle

As for the term *first-order attacks*, we borrow from the side-channel attacks litterature the *masking principle*.

- \blacktriangleright Each time a secret s of κ bytes must be transmitted
- ▶ Pick a random value m (the mask) of the same length
- ▶ Send the pair $(m, m \oplus s)$
- ▶ Thus, the value can trivially be recomputed
- ▶ But the representation on the wire is different for every message

The Masking Principle

As for the term *first-order attacks*, we borrow from the side-channel attacks litterature the masking principle.

- \blacktriangleright Each time a secret s of κ bytes must be transmitted
- \triangleright Pick a random value m (the mask) of the same length
- ▶ Send the pair $(m, m \oplus s)$
- Thus, the value can trivially be recomputed
- But the representation on the wire is different for every message
- ightharpoonup Since the attacker can only recover information about κ consecutive bytes for each record, she only obtains random data

Masking the TLS layer

Masking the TLS layer

▶ In practice, TLS Compression layer allows almost *any* reversible transformation of the plaintext

Masking the TLS layer

▶ In practice, TLS Compression layer allows almost *any* reversible transformation of the plaintext

This toy implementation does not follow the principle edicted before, since the whole record is masked, not just the secret

Implementation

OpenSSL implementation

- New compression method : scramble
- 75-line patch to add the scramble method
- Mask length is set to 8
- ► Some minor patches needed to add scramble support into s_client and s_server
- ▶ CPU and network bandwidth are negligible
- In practice, compression is now obsolete in TLS, so deploying a new compression method is irrelevant

Security analysis

- ▶ The first BEAST proof of concept used WebSockets
- It was thwarted when 4-byte masking was introduced to avoid some confusion attacks
- TLS scrambling would thus thwart BEAST
- It should also work against Lucky 13, RC4 single-byte biases and POODLE
- Yet, it does not only mask the secrets, so some attacks still work (e.g.: application-level compression)
- It should only be considered as a toy implementation

Masking at the HTTP Layer

RFC6265: HTTP State Management Mechanism

MCookies

- ▶ Objective: use a random mask for each sent cookie
- Targets: secure & httpOnly cookies
- ▶ How: for each server response, send a fresh pair $(m, m \oplus c)$

MCookies

MCookies

MCookies

Implementation

- ▶ Implemented as a simple Apache2 module (500 loc)
 - a2enmod mcookies is enough
 - Works with sequential requests
 - Works with parallel requests
- ▶ However some cookies attributes are lost in the process
 - (Expires, Max-Age, Domain, Path)

Implementation

- Expiration attribute is client side
- Session expiration should always be done server side.
- ► Fix 1: Add theses attributes to the MCookie
 - ▶ Server response: $(m:m \oplus v:a)$
 - ▶ Client request: $(m: m \oplus v: a)$
- ► Fix 2: Configure the Apache module
 - vim /etc/apache2/mods-enabled/...

Experiment

- ▶ Result: it works but it forces the server to re-emit a cookie each time
- Overhead ?
- Experiment scenario
 - Simulate an active user browsing internet services
 - Dump the HTTP traffic
 - Emulate the same traffic using MCookies for each Secure+httpOnly cookie

Traffic type	Raw volume	Overhead	Overh. optim.
Sensitive	24 MB	+20.1 %	+14.9 %
Overall	122 MB	+4.1 %	+3.0 %

Table: Experiment result

What if the browser could handle the masking?

Idea:

- ▶ The server can specify which cookies to protect
- ▶ The browser now sends a fresh $(m, m \oplus v)$ with each request.
- ▶ No more overhead.

Proposal:

- masked attribute:
 - Set-Cookie: cookie=val;secure;httponly;masked

Implementation

- ▶ Implemented as a simple Apache2 module (500 loc)
- ▶ and a patch for chromium. (200 loc)
 - Works with sequential requests
 - Works with parallel requests

MCookies Vs Masked-Cookies

► Same experiment scenario

	Raw	Extra bandwidth		
Traffic	traffic	w/o UA support		with UA
type	volume	naive	optim.	support
Sensitive	24 MB	+20.1 %	+14.9 %	+10.8 %
Overall	122 MB	+4.1 %	+3.0 %	+2.2 %

Table: Network overhead evalulation

MCookies Vs Masked-Cookies

CPU Overhead ?

		MCookies enabled		
	Vanilla	w/o UA	with UA	
	server	support	support	
Static page	384	318 (-17 %)	382	
Wordpress page	221	212 (-4 %)	220	

Table: Performance results (transactions/second)

► Recent attacks on TLS Record Protocol rely on a repeated secret

- ► Recent attacks on TLS Record Protocol rely on a repeated secret
- ▶ Our proposal to implement defense-in-depth: break this repetition

- Recent attacks on TLS Record Protocol rely on a repeated secret
- Our proposal to implement defense-in-depth: break this repetition
- MCookies and Masked Cookies can be implemented and work

- Recent attacks on TLS Record Protocol rely on a repeated secret
- Our proposal to implement defense-in-depth: break this repetition
- MCookies and Masked Cookies can be implemented and work
- POODLE validated our approach

- Recent attacks on TLS Record Protocol rely on a repeated secret
- Our proposal to implement defense-in-depth: break this repetition
- MCookies and Masked Cookies can be implemented and work
- POODLE validated our approach
- Yet, secret randomization is a palliative countermeasure, not the ultimate fix

- Recent attacks on TLS Record Protocol rely on a repeated secret
- Our proposal to implement defense-in-depth: break this repetition
- MCookies and Masked Cookies can be implemented and work
- POODLE validated our approach
- Yet, secret randomization is a palliative countermeasure, not the ultimate fix
- MCookies should be useful as a defense-in-depth countermeasure. to get some time to patch

Questions?

Thank you for your attention

Some history

- ▶ 1994: Netscape publishes SSLv2 (https:// is born)
- ▶ 1995: Netscape publishes SSLv3, which fixes major flaws
- ▶ 1999: TLS 1.0 (aka SSLv3.1) is standardised by the IETF
- ▶ 2006: TLS 1.1 fixes bugs in CBC mode and updates ciphersuites
- ▶ 2008: TLS 1.2 introduces modern cryptographic modes
- 2015 (?): TLS 1.3 is coming

Some history

- ▶ 1994: Netscape publishes SSLv2 (https://is born)
- ▶ 1995: Netscape publishes SSLv3, which fixes major flaws
- ▶ 1999: TLS 1.0 (aka SSLv3.1) is standardised by the IETF
- ▶ 2006: TLS 1.1 fixes bugs in CBC mode and updates ciphersuites
- ▶ 2008: TLS 1.2 introduces modern cryptographic modes
- ▶ 2015 (?): TLS 1.3 is coming

SSLv2 hopefully is history: this talk is about SSLv3 - TLS

CBC mode with implicit IV

- Attack name: BEAST
- ▶ Authors: Rogaway (theoretic), Duong and Rizzo (practical attack)
- ▶ Date: 1995 (theoretic), 2011 (practical attack)
- Hypotheses and prerequisites:
 - the TLS connection uses CBC with an implicit IV
 - the ciphertext is observable
 - the plaintext is partially controlled, adaptively
 - the same secret is repeated in different connections
- ▶ Ideal fix: use TLS 1.1 (explicit IV)
- Common fix: split records to randomize IV in practice

Compression attacks

- ► Attack name: CRIME (followed by TIME and BREACH)
- ► Authors: Duong and Rizzo
- Date: 2012 (practical attack)
- Hypotheses and prerequisites:
 - a form of compression is enabled (TLS or HTTP)
 - ▶ the ciphertext length is observable (packet size or timing difference)
 - plaintext can be loosely controlled
 - the same secret is repeated in different connections
- Ideal fix: avoid mixing attacker-controlled data and secrets
- Common fix: disable compression

CBC Padding Attacks

- Attack name: Lucky13 (followed by POODLE)
- ► Authors: Vaudenay (theoretic), AlFardan et al. (Lucky13) and Moeller et al. (POODLE)
- ▶ Date: 2002 (theoretic), 2013-2014 (practical attack)
- Hypotheses and prerequisites:
 - the connection uses CBC
 - ▶ the decryption process leaks information (Lucky13), or
 - the decryption uses SSLv3-style padding (POODLE)
 - the attacker can intercept and modify network packets
 - ▶ the same secret is repeated in different connections
- ▶ Ideal fix: use Encrypt-then-Mac or proper authenticated encryption
- ► Common fix (Lucky13): implement constant-time CBC decryption
- Common fix (POODLE): get rid of SSLv3

RC4 statistical biases

- Attack name: RC4 biases (no real name)
- Authors: AlFardan et al. (practical attack)
- ▶ Date: 2014
- Hypotheses and prerequisites:
 - RC4 is used to encrypt data
 - the ciphertext is observable
 - the same secret is repeated in different connections
- Ideal fix: ban RC4
- Common fix: ban RC4 when possible

