
TLS Record Protocol: Security Analysis and
Defense-in-depth Countermeasures for HTTPS

Olivier Levillain
ANSSI

olivier.levillain@ssi.gouv.fr

Baptiste Gourdin
Sekoia

baptiste.gourdin@sekoia.fr

Hervé Debar
Télécom SudParis

herve.debar@telecom-
sudparis.eu

ABSTRACT
TLS and its main application HTTPS are an essential part
of internet security. Since 2011, several attacks against the
TLS Record protocol have been presented. To remediate
these flaws, countermeasures have been proposed. They
were usually specific to a particular attack, and were some-
times in contradiction with one another. All the proofs of
concept targeted HTTPS and relied on the repetition of
some secret element inside the TLS tunnel. In the HTTPS
context, such secrets are pervasive, be they authentication
cookies or anti-CSRF tokens. We present a comprehensive
state of the art of attacks on the Record protocol and the as-
sociated proposed countermeasures. In parallel to the com-
munity efforts to find reliable long term solutions, we pro-
pose masking mechanisms to avoid the repetition of sensitive
elements, at the transport or application level. We also as-
sess the feasibility and efficiency of such defense-in-depth
mechanisms. The recent POODLE vulnerability confirmed
that our proposals could thwart unknown attacks, since they
would have blocked it.

1. INTRODUCTION
SSL (Secure Sockets Layer) is a cryptographic protocol

designed by Netscape in 1995 to protect the confidential-
ity and integrity of HTTP connections. Since 2001, the
protocol has been maintained by the IETF (Internet En-
gineering Task Force) and renamed TLS (Transport Layer
Security). Designed in 2008, the current version of the pro-
tocol is TLS 1.2 [9]. The original objective of SSL/TLS was
to secure online-shopping and banking web sites. With the
deployment of web services using the so-called Web 2.0, its
use has broadened drastically.

TLS typical use consists of two consecutive phases: the
Handshake protocol negotiates the cryptographic algorithms
and keys, and authenticates the server to the client us-
ing certificates; the second phase, the Record protocol, pro-
tects the confidentiality and integrity of subsequent mes-
sages, called records, carrying the application data. In this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714592.

article, we only consider attacks on TLS Record layer, letting
aside handshake-related subtleties such as session resump-
tion, renegotiation or client authentication.

Depending on the handshake outcome, the records can
be protected using one of the three following cryptographic
schemes: MAC-then-encrypt with a streamcipher, available
since SSL inception (as of today, only RC4 is standardized);
MAC-then-encrypt with a blockcipher using CBC mode, avail-
able since SSL inception; AEAD (Authenticated Encryp-
tion with Additional Data), available from TLS 1.2 only
(e.g. AES using GCM mode). Optionally, the plaintext can
be compressed before cryptographic transformations occurs.
Fig. 1 describes the three possible workflows.

Stream cipher mode

Plaintext P

Compressed C

C MAC

Authenticated and
Encrypted record

|P| < 214

|C| < |P| + 1024

Compression (optional)

MAC'ed then
Encrypted record

MAC'ed then Padded
then Encrypted record

C MACC MAC
P
a
d

Encryption (XOR)

C MAC

Padding

Encryption (CBC)

CBC mode

MAC MAC

AEAD step

AEAD mode

Figure 1: TLS Record protocol (streamcipher mode,
CBC mode and AEAD mode).

Since 2011, several researchers have presented attacks af-
fecting the Record protocol confidentiality. Each time, to
prove the applicability of their findings, they implemented
attacks against HTTPS. Typical HTTP secrets are cookies
and anti-CSRF tokens. If stolen, they enable attacks like
message replay, session highjacking or web site compromis-
ing. Fundamental to state maintenance in web applications,
they are usually transmitted several times both within ses-
sions and across different sessions. As a matter of fact, each
proof of concept relied on one of these secret elements re-
peatedly transmitted inside TLS connections. Thus, a way
to thwart attacks exploiting this kind of repetitions, exist-
ing or still unknown, is to mask the secrets so the attacks

become inefficient in practice. In this article, we focus on
cookie protection. HTTP Basic/Digest Authentication, and
server-side attacks are discussed in the appendices.

Sec. 2 describes several recent attacks, and the proposed
countermeasures. Sec. 3 presents our attacker model and
the masking principle. Two proofs of concept have been
implemented to assess the applicability and efficiency of our
proposals. Sec. 4 describes those implementations, whereas
Sec. 5 analyses the effectiveness of the proposed mechanisms,
as well as their impact on performance.

Our contribution is threefold: first, we propose a compre-
hensive analysis of recent attacks on TLS Record layer with
their countermeasures; then we present a new defense-in-
depth approach to the problem, orthogonal to the current
efforts towards long-term solutions, and illustrate them with
two proofs of concepts; finally, we analyse those implemen-
tations, security- and performance-wise.

2. ATTACKS ON THE RECORD PROTOCOL
This section describes five recent attacks published be-

tween 2011 and 2014, targeting a session cookie sent by the
client.

2.1 BEAST: implicit IV in CBC mode
In 1995, Rogaway described an adaptive chosen plaintext

attack against the CBC mode with a predictable IV [30].
In 2002 [21], it was noticed that TLS used predictable IVs,
since the last encrypted block of a record is used as the next
record IV. However, this attack was deemed impractical at
the time, or at least challenging citeBard04–tls-cpa,Bard06–
tls-cpa, since it was an adaptive chosen plaintext attack.
The situation changed in 2011 when Duong and Rizzo pre-
sented BEAST (Browser Exploit Against SSL/TLS) [10], a
proof of concept of the vulnerability. Fig. 2 (left-side) de-
tails the ”Encryption (CBC)” step presented in Fig. 1, when
implicit IV is used.

Using the notations of Fig. 2, the attacker can ”guess”that
the value of P1 is equal to some P ? and check the validity
of her guess. Indeed, after the two records have been sent,
she knows C5 will be the next record IV. Thus she sends
P6 = P ?⊕C5⊕C0 as the next plaintext block, and observes
C6 = E(P6⊕C5) = E(P ?⊕C0). If the guess was correct (i.e.
P1 is P ?), C6 = C1, which is observable. The corresponding
encryption step is given on the right side of the figure.

Furthermore, to avoid having to guess a whole block, the
proof of concept cleverly aligns the blocks so that the block
to guess only contains one unknown byte. For instance,
if the attacker knows P1 is ":SESSION_TOKEN=?" where ?

is unknown, she only needs at most 256 attempts (128 on
average) to recover the byte (or even less, if the targeted
byte belongs to a constrained charset).

Finally, to send the chosen plaintext data in the same TLS
session as the target web application, the Same Origin Policy
(SOP1) [4] must be bypassed. Due to the complexity of the
web ecosystem, vulnerabilities allowing SOP violations are
regularly found on standard browsers and web applications2.

1SOP is a fundamental security property implemented in
web browsers, intended to prevent scripts loaded from a
given site from communicating freely with another site
2Early BEAST implementations used WebSockets. Authors
had to use a Java bug when WebSockets were randomised.

Hypotheses and prerequisites
• The connexion uses CBC mode with an implicit IV;

• The ciphertext is observable;

• The plaintext is partially controlled, adaptively;

• Multiple connections containing the same secret can
be triggered.

Proposed countermeasures
Switch to TLS 1.1. This is the long term solution, since
TLS 1.1 introduces an explicit (and unpredictable) IV for
each record. Yet, TLS 1.1 is still not widely deployed, as
shown by different studies [28, 19]. What is worse, to accom-
modate broken implementations, up-to-date browsers use a
fallback strategy when a TLS connection fails, and retry us-
ing older versions (TLS 1.0 or SSLv3).

Use TLS 1.2 AEAD suites. AES-GCM or AES-CCM
are not vulnerable to this attack, but they are only available
with TLS 1.2. As for TLS 1.1, this protocol version is not
widely deployed, and may be subject to a downgrade attack.

Use RC4 to avoid CBC mode. With TLS 1.0 and
earlier versions, this is an efficient way to counter this attack,
and it can be deployed easily and reliably (but Sec. 2.4 shows
this is not an overall acceptable solution).

Randomize the IV by splitting the record. By split-
ting the records to send in two records, the first one contain-
ing the first byte of the original record, and the second one
the remaining data, the attack still works, but only on the
first byte. This so-called ”1/n − 1 split” is efficient and im-
plemented in major browsers3.

Fix SOP violations and XSS bugs. To mount the
attack, forged requests must be sent to the target, either by
bypassing the SOP or by exploiting a Cross Site Scripting
(XSS) vulnerability. It is obviously desirable to fix all these
bugs, but the ever-evolving web ecosystem makes this goal
difficult to reach.

2.2 CRIME & TIME: client-side compression
In 2012, Duong and Rizzo published another attack against

TLS named CRIME (Compression Ratio Info-leak Made
Easy) [29]. Again, their objective was to recover a secret
cookie. The attack is based on the compression step in the
Record protocol and assumes the attacker is able to choose
part of the cleartext, e.g. the URL path. The following
year, another research team presented the TIME (Timing
Info-leak Made Easy) attack [32], a variant of the CRIME
attack, relying on a different feedback method.

Let’s assume the secret cookie, SESSION_ID, is an hex-
adecimal string, and that the attacker can trigger successive
HTTPS connections while controlling part of the cleartext
(typically the URL path). This does not violate the Same
Origin Policy, and the resulting HTTP requests will con-
tain both the forged URL (www.target.com/SESSION_ID=X
in our example, X being an hexadecimal character) and the
cookies corresponding to the target. When these requests
are compressed, the redundancy will be maximum when the
attacker has guessed the secret correctly, which should re-

3Initially, a ”0/n split” had been implemented in OpenSSL,
but it proved to break some implementations, despite empty
ApplicationData records being licit.

MAC'ed & padded
record

P
0

P
1

P
2

IV

E
k

E
k

E
k

C
0

C
1

C
2

MAC'ed & padded
record

P
3

P
4

P
5

E
k

E
k

E
k

C
3

C
4

C
5

TLS
Handshake

First record
sent

Second record
sent

Timeline

C
5

MAC'ed & padded
Record, with P

6

chosen by the attacker

P
6

P
7

P
8

E
k

E
k

E
k

C
6

C
7

C
8

Third record
sent

P
1

E
k

C
0

C
1

To be compared to the
previous sequence:

With P
6
 = P* xor C

0
 xor C

5

Figure 2: [Left] CBC with implicit IV in SSL/TLS before TLS 1.1: IV is generated during the handshake,
then all records are encrypted as a continuous CBC flow. [Right] To check whether P1 = P ?, the attacker
encrypts a record starting with plaintext block P6, and compares the output C6 to C1, previously observed.

sult in a better compression. To make this phenomenon
observable, the attacker needs the record to get smaller4.

CRIME and TIME propose two different methods to ob-
serve the impact of compression on the plaintext. CRIME
simply relies on the encrypted packet sizes, assuming the
attacker is able to capture the victim’s traffic. TIME uses
a different feedback method: the variation of transmission
time between a correct guess (where compression is more
efficient) and an incorrect one5. To amplify the effect of a
compressed plaintext being one byte shorter, the idea behind
TIME is to forge a plaintext such that the encrypted packet
just crosses the TCP window size and requires a TCP ACK
from the server before sending the remaining byte. This
way, when the attacker guesses the correct character, the
compression kicks in and the encrypted data contains one
byte less, which does not require to wait a Round Trip Time
for the ACK. This difference in timing is observable from
the client-side script launching the requests.

Hypotheses and prerequisites
• TLS compression is activated;

• The ciphertext length is observable, e.g. via packet
sizes or timing leaks;

• Plaintext can be loosely controlled by the attacker;

• Multiple connections containing the same secret can
be triggered.

Proposed countermeasures
Disable TLS compression. This blocks the attack com-
pletely, and has no significant impact on performance.

Randomize the packet length. Several proposals were
made to add random-length padding to application mes-
sages (adding random bytes or slicing the HTTP content

4To this aim, some parameters need to be tuned, like the
block alignment (with CBC encryption) and a way to reset
the compression dictionary (the main compression algorithm
in TLS, Defalte, is stateful).
5TIME authors also described an attack to recover server-
sent anti-CSRF tokens. Appendix B presents details on
server-side compression attacks and countermeasures.

in chunks). Unless the added data is significant enough
(which is equivalent in practice to disabling compression),
these proposals essentially force the attacker to collect more
data, but do not fundamentally invalidate the attack.

Restrictions on cross-site requests. If cross-site re-
quests were forbidden (or at least excluded sensitive infor-
mation like authentication cookies), the attacker would first
need to exploit an XSS to mount this attack, but many web
applications would also break.

2.3 Lucky 13: CBC padding oracle
In TLS, when a blockcipher is used with CBC, the plain-

text is MAC’ed then padded and encrypted, which allows
for attacks exploiting padding oracles, first introduced by
Vaudenay in 2002 [33]. As soon as an attacker can distin-
guish between a MAC error and a CBC padding error, be it
through an out-of-band message or a timing difference, she
can gain information about the plaintext.

P

IV

C

E
k

CC

... g
C*

...

Padding check and removal
(OK if g xor p

n-1
 xor IV

n-1
 = 0)

MAC verification

P IV

E
k

-1

P IVP IV

Normal encryption Tampered decryption

g p
n-1

IV
n-1

Figure 3: CBC encryption and decryption, in the
light of a padding oracle exploitation. Blocks C, C?

(in particular its last byte g) and IV are known.

When decrypting a CBC-encrypted record, the recovered
plaintext should end with a valid padding: p bytes all valued
p−1 (for example, blocks ending with 00, 0101, 020202, etc.
are correctly padded). Let P = p0p1 · · · pn−1 be a plaintext
block, and C = c0c1 · · · cn−1 be the corresponding ciphertext
(see Fig. 3, on the left side). To guess the value of pn−1, the
attacker can send a fake ciphertext containing two blocks:
C?C, with C being the ciphertext block to recover and C? a
random block, ending with c?n−1 = g (the decryption of the
second block is described in Fig. 3, on the right side). If the
guessed byte g is indeed equal to pn−1 ⊕ IVn−1, the output
of E−1

k will end with a null byte, the padding will be correct,
and this will lead to a MAC error (since the attacker can not
create a valid MAC). Otherwise, if the guess is incorrect, the
padding will be incorrect, with overwhelming probability6.

If the attacker can distinguish between MAC errors and
CBC padding errors, she can use the resulting padding or-
acle to guess the content of a block, one byte at a time.
Indeed, once the attacker has identified the last byte pn−1,
she can try and find whether pn−2 = g with C? ending this
time with (g ⊕ 01)|(pn−1 ⊕ 01), and so on.

The initial specifications of SSL/TLS stated that both
error cases (invalid MAC and padding error) should lead
to different alert messages. However, this was not directly
useful from the attacker point of view, since the alert was
encrypted. Another way to differentiate the two error cases
is to measure the time needed to reject the invalid packet.
When no MAC is performed, the answer is returned faster.
That is why TLS 1.1 [8] contains a note stating that im-
plementations MUST ensure that record processing time is
essentially the same whether or not the padding is correct.

Moreover, such attacks were initially considered imprac-
tical against TLS since modified records would eventually
trigger a MAC error, be rejected, and cause the whole ses-
sion to close. In 2012, Paterson et al. studied the applicabil-
ity of this attack to DTLS [23]. Datagram TLS (DTLS) [27]
is a cryptographic protocol similar to TLS relying on UDP
instead of TCP; since UDP is not a reliable transport layer,
datagrams may be lost or corrupted. Furthermore, DTLS
does not close a session when a MAC error is encountered
(nor does it emit a warning). The authors identified a timing
attack that made it possible to distinguish a padding error
from a MAC error (to amplify the timing info-leak, several
identical consecutive packets are sent on the wire).

In case of a padding error, the standard implementation
of TLS CBC decryption assumes a fixed-length pad, which,
according to the implementation note quoted earlier, leaves
a small timing channel, since MAC performance depends to
some extent on the size of the data fragment, but it is not be-
lieved to be large enough to be exploitable. It was established
in 2013 that this small info-leak was in fact exploitable in
TLS to obtain a padding oracle [2]. Moreover, when the
target is a constant secret string repeatedly sent in the en-
crypted channel, it does not matter that the TLS session is
closed and that the keying material changes accross sessions.
The proof of concept was named Lucky 13, after the size of
the pseudo-header MAC’ed with the message.

6To be precise, there is a 2−16 probability to get a plain-
text ending with 01 01, a 2−24 to get 02 02 02, and so on.
To eliminate those false positives, the attacker can simply
repeat the operation with a different random string in C?.

Hypotheses and prerequisites
• The connexion uses CBC with a timing info-leak;

• The attacker is able to intercept and modify packets;

• Multiple connections containing the same secret can
be triggered.

Proposed countermeasures
Add random delays to CBC-mode decryption step.
This would only increase the complexity of the attack (re-
quiring more samples to compute the mean value).

Implement constant-time MAC-then-Encrypt. Such
implementations counter the attack, but the code needed to
obtain efficient record processing in effectively constant time
is complex (the OpenSSL patch is almost 300 lines long).

Use RC4 to avoid CBC mode. As for BEAST, it
thwarts this attack but is inconsistent with other measures.

Use TLS 1.2 AEAD suites. As for BEAST, this works
but is hard to deploy reliably.

Switch to Encrypt-then-MAC. This would solve the
problem, but the specification [16] is still young. Moreover,
it relies on an extension, which would lead to the same de-
ployment and reliability issues as TLS 1.2.

2.4 RC4 biases
RC4 is a stream cipher designed by Rivest in 1987. It is

very simple to implement and has very good performance in
software. It has thus been widely adopted in protocols (WiFi
encryption protocols WEP and WPA, or TLS for example).
Since 1995, several statistical biases have been identified in
the first bytes of an RC4 keystream. These flaws eventually
led to very efficient attacks against WEP [31].

As these attacks rely on initial biases of the keystream,
it was proposed to drop the first n bytes of the keystream,
but later findings show the existence of additional statistical
biases, even after the initial bytes [12]. In 2013, two research
teams presented practical attacks against the encryption of
the same fixed sequence of plaintext using large numbers of
different keys [18, 1], which apply to HTTPS cookies.

Here is a short description of the most efficient attacks on
RC4, presented in the article by AlFardan et al. Their single-
byte bias attack relies on the fact that the first 256 bytes
of the keystream are strongly biased. The researchers gen-
erated a lot of RC4 keystreams to observe the actual dis-
tribution of each of the 256 first bytes. Using an empiri-
cal reference of 245 keystreams, it is possible to recover the
first 256 bytes of a plaintext, as soon as it is encrypted a suf-
ficient number of times; this number varies from 224 to 232

as a function of the byte position in the 256 bytes keystream.
Using the reference distribution and the encrypted distribu-
tion, the idea is to find the most probable byte value, by
measuring the distance between the reference distribution
and each of the candidate keystreams.

However, the attack is hard to implement, since it requires
a lot of different TLS connections, and only works for data
sent in the first few bytes. To overcome these limitations, the
researchers also used long-term biases described by Fluhrer
and McGrew [12] on consecutive bytes to perform a practical
attack requiring more keystream, but which could work in
a pipelined HTTPS stream (i.e. using different messages
within the same TLS connection). This double-byte bias
attack is more practical than the single-byte bias one, and a
proof of concept was developed to recover an HTTP cookie.

Hypotheses and prerequisites
• TLS uses RC4 to encrypt data;

• The attacker is able to observe encrypted packets;

• Multiple connections containing the same secret can
be triggered.

Proposed countermeasures
Use CBC mode to avoid RC4. This is an efficient way
to counter this attack, and it can be deployed easily and
reliably. Obviously, this recommendation is in contradiction
with the Use RC4 recommendation (from Sec. 2.1 and 2.3).

Use TLS 1.2 AEAD suites. This works but leads to
deployment and reliability issues.

Use another streamcipher. ChaCha20 [5] is currently
under examination by the IETF as an alternative stream
cipher. Such a change could be easier to deploy than a pro-
tocol version switch, as the ciphersuite negotiation is usually
better supported, but it will still require some time7.

Throw away the first bytes of the keystream. This
behavior could be specified in TLS (with a new ciphersuite
or extension) or HTTP (by padding the beginning of mes-
sages), but we know exploitable long-term RC4 biases exist.

Randomize the packet length. As for compression at-
tacks, random padding would only increase the complexity.

2.5 POODLE: another padding oracle
In October 2014, Möller, Duong and Kotowicz presented

POODLE (Padding Oracle on Downgraded Legacy Encryp-
tion) [22], another padding oracle targeting SSLv3 CBC
mode. The old SSL version indeed handles CBC padding
in a specific way: when n bytes are needed to pad a plain-
text, the last byte is set to n − 1 (as in TLS, described in
Sec. 2.3), but the other bytes can take any arbitrary value.
An attacker can use this liberty to get a padding oracle.

C
i

GET <path>...Cookie: XXX...<body>
MAC Padding

Plaintext

controlled
by the attacker
to choose this

block boundary

controlled
by the attacker
to choose this

block boundary

ookie: XP
i
 =7P

n
 =

C
n

C
n-1

...Encrypted
record

...

C
i

C
i

C
n-1

...Tampered
record

...

Figure 4: POODLE attack exploiting SSLv3 CBC
Padding, assuming an 8-byte blockcipher.

Let’s assume an attacker can trigger requests to the vul-
nerable site using SSLv3 and CBC mode. Since she may

7Moreover, the current draft actually specifies an AEAD
suite, not a streamcipher one, which would require TLS 1.2.

alter the path fragment in the URL, she may prepare the
request in such a way that the cookie ends on a block fron-
tier. Moreover, she may include a request body of arbitrary
length after the headers, which allows her to get a plain-
text message (once the MAC is appended) whose length is
a multiple of the block size (see Fig 4). This way, a whole
block would be added in the padding phase. Such a block
has only one constraint: the last byte must be n− 1 where
n is the block length.

Once the request is sent by the browser, the attacker needs
to modify the record on the wire. She must replace the all-
padding block by the block where the last byte is to be
guessed, as shown in Fig. 4. If the decryption of the last
blocks leads to the correct value (n−1), the rest of the block
is ignored and the record is accepted by the server. It means
the last byte of E−1

k (Ci)⊕ Cn−1 is n− 1, and that the last
byte of Pi is Cn−1⊕Ci−1⊕ (n− 1). If the padding does not
end with n−1, the decryption will need to a MAC error and
to the end of the connection. If the attacker retries, another
key will be used and Cn−1 will be randomized. Thus, each
byte can be guessed with a 2−8 probability, which results in
256 requests needed to recover each byte of the secret value.

It is interesting to note that this attack relies on the
browser using a fallback strategy, and on the server to accept
the obsolete SSLv3 version of the protocol.

Hypotheses and prerequisites
• The connection uses SSLv3 with CBC mode;

• Plaintext can be loosely controlled by the attacker;

• The attacker is able to intercept and modify packets;

• Multiple connections containing the same secret can
be triggered.

Proposed countermeasures
Use TLS 1.0. Since this powerful padding oracle is only
present in SSLv3, forbidding this deprecated version is an
efficient countermeasure. Moreover, only a small portion of
the internet still relies on this version of the protocol, which
makes this measure also practical.

Use RC4 to avoid CBC mode.
Use TLS 1.2 AEAD suites.
Switch to Encrypt-then-MAC. These three countermea-
sures work, with the same reservations as before.

Anti poodle record splitting. Opera and Google’s
developper Adam Langley proposed to split SSLv3 CBC
records to counter the POODLE attack. The proposed split-
ting method is supposed to avoid whole blocks of padding.
Yet, POODLE paved the way for new SSLv3 padding oracle
attacks, which may not be blocked this way.

TLS FALLBACK SCSV. Möller and Langley proposed
a mechanism to avoid browser fallbacks when a higher ver-
sion is supported by both the client and the server, using a
fake signaling ciphersuite. This would indeed block down-
grade attacks and POODLE in particular, between up-to-
date parties. Yet, legacy SSLv3 stacks would still be at risk.

2.6 Comparative analysis of these attacks
To mitigate these threats, many countermeasures have

been proposed. Our analysis shows that some of them have
no real effect on the attacks: throwing the first bytes of RC4
keystream, randomizing the packet length or adding random

Countermeasures Dep. Rel. HTTP Beast L 13 RC4 *IME POODLE

Structural changes to TLS
Use TLS 1.0 + + + +
Use TLS 1.1 – – + + +
Encrypt-then-MAC – – – + +
Changes related to TLS ciphersuites or compression methods
Use CBC mode + + + +
Use RC4 + + + + + +
Use a new stream cipher – + + + + + +
Use AEAD (TLS 1.2) – – – + + + + +
No TLS compression + + + +
Changes related to TLS implementations
1/n− 1 split – + + +
Constant-time CBC – + + +
Anti poodle splitting – + + +
Other countermeasures in related work
Single-use cookie – – + – + + + +
One-Time Cookies [7] – – – + p p p p p

Countermeasures presented in this article
TLS scrambling – – + + + + + + +
MCookies (server) – + + + + + +
MCookies (client/server) – – + + + + + + +

Table 1: Summary of the proposed countermeasures.

delays to CBC-mode decryption. Others require significant
changes to the architecture of web applications and would
be hard to enforce: restricting cross-site requests or fixing all
SOP/XSS bugs. The remaining countermeasures are listed
in Table 1, and compared using different criteria:

• Dep. relates to the ease of deployment of the pro-
posed solution. In particular, studies [24, 19] shed light
on the problem of existing intolerance, e.g. new TLS
versions raising important compatibility issues;

• Reliability (Rel.) corresponds to the assurance we
have the countermeasure will not be easily bypassed
between a client and a server both implementing the
solution. The idea is to capture the possible down-
negotiation and fall-back strategies (for example issues
related to TLS version negotiation);

• HTTP assesses the compatibility of the measure with
HTTP use-case. Current web applications have to e.g.
accommodate with multi-tab browsing. Countermea-
sures should not break or limit such features;

• A set of columns state whether the countermeasure
is efficient against each attack (BEAST, L13, RC4,
*IME for compression attacks, and POODLE), ”p”
meaning the measure only partially blocks the attack.

The last lines of the table describe countermeasures pro-
posed in related work (Sec. 6) and our proposals (Sec. 4).

3. ATTACKER MODEL AND THE MASK-
ING PRINCIPLE

The legitimate actors we consider are: the user agent (e.g.
Firefox), the HTTP(S) server (e.g. Apache) and the web
application (a program written in PHP or Python for exam-
ple). The web application may rely on a framework designed

to abstract the inherent complexity of web development (e.g.
Django or Zend). The attacker we consider is an active net-
work attacker, able to read, modify or delete packets be-
tween the client and the server. We also assume, as for each
of the attacks presented in Sec. 2, that a secret cookie is
repeated across different TLS messages.

Given a TLS session, we assume the attacker is able to
retrieve some information about κ consecutive bytes of the
corresponding plaintext. Typically, κ = 1, and the attacker
is able to check whether a cleartext byte is equal to a guessed
value. Thus, by repeating the attack on constant plaintext
bytes, she can recover this part of the plaintext.

To draw a parallel with side-channel attacks [6, 15, 26],
such attacks may be called first order attacks. To deal with
them, a typical countermeasure is to mask the secret value:
each time a secret s of κ bytes must be transmitted, a ran-
dom value m (the mask) of the same length would be chosen
and the pair (m,m⊕s) would be sent instead of s. This way,
the value can trivially be recomputed by the other party, but
the representation on the wire is different for every message.
If the secret s to mask is longer than κ, s can be split in
κ-byte words, masked by the same mask. Alternatively, it is
possible to choose a longer mask to cover the secret entirely.

Masking all secrets using a fresh mask would force the
attacker to mount a second order attack, that is find a way
to simultaneously retrieve information about the mask and
the masked value, to learn something about the secret.

Most of the attacks described in Sec. 2 are designed to
recover the plaintext one byte at a time, which makes them
first order attacks with κ = 1. Some attacks against RC4
also exploit statistical biases on two consecutive bytes, which
also corresponds to our model (for κ = 2).

In practice, the BEAST, CRIME, TIME and Lucky 13
attacks could easily be extended to guess κ consecutive bytes
at once (for example, for BEAST, this would mean aligning
the boundary of the block to guess differently). However, the

complexity to recover κ bytes at once would be proportional
to 28κ (instead of κ · 28), which limits κ to small values
in practice. To be conservative, we consider the maximum
number of recoverable successive bytes κ to be 8.

Overall, the recent attacks against TLS Record layer can
all be considered as first order attacks (with κ ≤ 8). So,
masking secret values using unique 8-byte random strings
will mitigate these attacks. In the following sections we
present two implementations of this concept applied to the
transport and the application level.

Concerning RC4, it can be noted that other known biases
exist and are related to distinct distant groups of keystream
bytes. Thus, second order attacks against RC4 might be
possible by exploiting such biases. We briefly discuss this
case in the conclusion.

4. PROPOSED MECHANISMS
This section presents generic mechanisms to mitigate the

impact of TLS security flaws, by leveraging the masking
principle. The first one acts at the transport (TLS) layer,
while the second one works at the application (HTTP) level.

4.1 TLS Scramble: Masking at the TLS level
The idea of masking application data at the transport

level is not new in TLS. During the specification of Web-
Sockets [11], a recent HTML5 feature, a randomization step
was added to avoid confusion between WebSocket traffic and
other protocols, that could be leveraged by an attacker.
WebSocket randomizes client-to-server traffic using 4-byte
long masks. An interesting side effect of this change was to
block the early version of the BEAST attack, forcing Duong
and Rizzo to rewrite their exploit using Java instead of Web-
Sockets.

4.1.1 A fake compression method: Scramble
As shown in Fig. 1, record processing may optionally com-

press the plaintext before the cryptographic transformations.
This step takes a plaintext record of at most 214 bytes, and
produces a compressed record that can be at most 1024 bytes
longer than the plaintext.

To generalize the idea behind WebSockets masking, we
define a fake compression algorithm, Scramble. Given a κ
parameter (the mask length) and a plaintext P , the way
Scramble compresses P is as follows:

• the scramble_record method generates a κ-byte ran-
dom string m;

• m is repeated, and possibly truncated, to be as long
as P . The result is a masking string M ;

• the compressed record is m|P ⊕M , which is exactly
κ-byte longer than P .

The unscramble_record operation is straightforward:

• on receiving a compressed string c, which should con-
tain at least κ bytes, extract the first κ bytes of c as
the mask m, and call X the remaining string;

• expand m to be as long as X to obtain M ;

• the uncompressed value is M ⊕X.

4.1.2 Implementation in OpenSSL
To check the feasibility of this idea, we implemented the

Scramble compression method in OpenSSL (v1.0.1) with 8-
byte masks. The patch affects the crypto/comp directory.
It adds c_scramble.c, a 75-line file describing the method,
as well as trivial changes to comp.h and to the correspond-
ing Makefile. The scramble_record function is given in
Appendix C. To test the method with real connections, we
also patched apps/s_client.c and apps/s_server.c to ex-
change data over the scrambled channel.

4.2 MCookies: Masking at the application level
Another way to tackle the problem is to mask secret val-

ues at the application level, which requires less bandwidth
(only relevant elements would need to be masked) and avoids
modifying TLS stacks. In this section, we propose a method
to mask cookies at the HTTP level.

4.2.1 MCookies principle
Usually, HTTP cookies work as specified in Fig. 5: a server

can define cookies to be stored by its client, then each time
this client sends a request to the server, the cookies are
added to the headers [3]. In some cases, they may also be
read and modified by client-side scripts.

If we only consider cookies that are never read nor modi-
fied by client-side scripts, there is a simple way to break this
repetition while modifying only the HTTP server, which is
described in Fig. 6:

• Cookie definition: when the web application sets
such a cookie (e.g. calling set-cookie(SESSID, V)),
the HTTP layer rewrites the Set-cookie header to
send SESSID=M:M ⊕ V instead of SESSID=V 8.

• Cookie restitution (and redefinition): for each
request containing a SESSID=X:Y cookie, the HTTP
server transmits SESSID=X⊕Y (the unmasked cookie)
to the web application. Then, three cases may arise:

– the web application updates the cookie, which is
covered by the Cookie definition step;

– it can erase the cookie by setting an outdated
expiration time, in which case the HTTP layer
simply transmits the header as is;

– otherwise (the cookie is left unchanged by the ap-
plication), the HTTP server sets a new version of
the cookie, M ′:M ′ ⊕ V , that is the same initial
value masked using a fresh random mask.

4.2.2 Discussion of MCookies feasibility
To select the senstive cookies to protect, a simple way

would be to define a static list of cookie names, but a natu-
ral heuristic is to protect every cookie flagged both httpOnly

and secure. Only considering httpOnly cookies guarantees
that client-side script have no access to the cookie value,
leaving the HTTP server free to change the cookie represen-
tation at will. However, from the web application point of
view, the cookie value sent and received remains the same.
Moreover, protecting a non-secure cookie is pointless as this
one can be easily stolen with our attacker model in general9.
8Since M and M ⊕ V are binary strings, Base64 is used.
9Even when cookies are sent without the secure attribute,
security mechanisms like HSTS (HTTP Strict Transport Se-
curity [17]) can forbid cleartext communications.

Figure 5: HTTP cookies: definition and restitution.

Figure 6: Definition and restitution of MCookies

Yet, rewriting the cookies on every request has negative
consequences. First, it adds extra-bandwidth in server mes-
sages. Second, the original cookie attributes (Expires, Max-
Age, Domain, Path) are lost in the process. These attributes
would need to be specified at each redefinition to keep ap-
plication cookies constistency. To fix this problem, the at-
tributes from the original Set-cookie header are encoded in-
side the masked cookie: a sensitive cookie V with attributes
A would be transmitted to the client as M:M ⊕ V :A. It
would thus be possible to remember the correct attributes
for each request.

By fixing the attribute problem, we amplified the band-
width overhead. However, we can use smaller representa-
tions for several attributes, since each request carries infor-
mation that can help rebuild the Domain and Path attributes.
For domains, we can keep only the number of subdomains
in the domain and the presence of a starting dot. For exam-
ple, the .example.com domain would become .2, whereas
sub.example.com would become 3. Indeed, the exact do-
main can be rebuilt using the Host header in the request.
Therefore, we only need a single byte to encode domains,
using the sign bit to store the presence of the starting dot,
leaving 7 bits for the node count. A similar transformation
can be applied to path attributes. Finally, the expiration
attribute can be converted into a 8-byte timestamp.

Another drawback of MCookies is that they cannot pre-
vent active network attacks (such as Lucky 13). Indeed,
when the record packets are modified by the attacker, they

are seen as corrupted records by the server TLS stack, and
discarded. Since the HTTP server never receives the cor-
responding request, it cannot answer with a freshly masked
cookie. To counter active attacks, the browser could monitor
failed successive HTTPS connections for each origin and, af-
ter a given number of broken connections, erase the cookies
associated to this domain. Drawbacks of this countermea-
sure are twofold:

• the client has to be modified to maintain this counter;

• setting a correct threshold is hard: the trigger should
be effective against real attacks, but a low threshold
would easily break HTTPS sessions on poor quality
network connections.

To overcome MCookies limitations, we extend MCookies
with a new HTTP header: Masked-Cookie. This extension
requires a change in the browser that is now put in charge
of masking cookies.

4.2.3 Masked-Cookie headers
In addition to the MCookies mechanism, we introduce a

new Set-Cookie attribute, masked to signal to the client
the presence of masking. Then, a compliant client would,
for each request, send this cookie in a new header, Masked-
Cookie, with the value here masked by the client : Masked-

Figure 7: Use of Masked-Cookie headers: masking is done by the client.

Cookie: SESSID=M ′:M ′⊕V . Fig. 7 describes the protocol
use of this new header.

By moving the cookie masking process to the client side,
active attacks are no more effective. Faced with a compliant
client, a server only needs to define MCookies once, so the
extra bandwidth cost is essentially removed. On the other
hand, a standard client will ignore the masked attribute, and
the server will fall back on the previous behavior.

4.2.4 Apache Implementation
Implementing MCookies can easily be done as a filter

module for HTTP servers. We chose Apache for our proof of
concept, since it is open-source, and currently the most de-
ployed HTTP server (its market share is estimated at 45 %
by Netcraft10 and at 65 % by W3Techs11).

Apache exposes a powerful module system with hooks al-
lowing to interact with the request and response processing.
In order to mask the cookies sent by the server during the
emission of the Set-Cookie header, we hook the response
process using an output_filter, defined by mod_filter.
To this aim, we call the ap_register_output_filter and
ap_add_output_filter_handle functions. Then, to unmask
the cookies received via Cookies headers from the client, we
hook the request handling. The input_filter hook happen-
ing too late in the process, we use an earlier control point,
when headers are parsed, using ap_hook_header_parser.
The last step is to send a new representation of the cookie
parsed in the request, along with the response; this step is
easy to implement since request cookies are available from
the output_filter hooks.

The overall code to implement the MCookies (including
the Base64 code to encode the masked value safely) is around
500 lines of C. It handles both the MCookie rewriting, with-
out compression, and the Masked-Cookie extension.

4.2.5 Masked-Cookies for Chromium
Chromium is currently the most popular web browser. As

it is open-source and modular, we decided to patch this web
browser to prove the feasibility of Masked-Cookies head-
ers in a real world context. The overall C++ patch for
Chromium (version 31) only counts 241 lines. It adds the
masked attribute to the internal cookie representation, the
CanonicalCookie class, as a new attribute. Masking and un-

10http://www.netcraft.com
11http://w3techs.com

masking are implemented in the CanonicalCookie::Create

and CookieMonster::BuildCookieLine methods.

5. ANALYSIS OF MASKING MECHANISMS

5.1 Security analysis

5.1.1 TLS Scramble method
Specified as a new TLS compression method, TLS Scram-

ble would require deployment efforts. However, once de-
ployed, TLS compression negotiation would be reliable, since
it is similar to ciphersuite negotiation, which is known to
work between all TLS stacks.

TLS Scramble disables real TLS compression, trivialy de-
feating CRIME and TIME attacks. This technique is also
efficient against BEAST, Lucky 13, RC4-biases and POO-
DLE attacks, since they only recover the secret one byte at
a time, and that Scramble makes this byte a moving target.

It is however important to notice that TLS Scrambling
masks the entire messages, and not only the secret values,
which means this method does not meet the principle de-
scribed in section 3 per se. In particular, some attacks rely-
ing on mixing secret values and attacker’s guess might still
work, e.g. compression attacks in the application layer.

5.1.2 MCookies
MCookies randomize only the cookie values sent by the

client, which fits exactly our masking principle. As long as
secrets are masked, first-order attacks will be defeated by
MCookies: this is the case for passive network attacks like
BEAST, client-side compression attacks and RC4-biases.

To be effective, MCookies need HTTP requests to reach
the server and the corresponding answers (containing a freshly
masked cookie) to get back to the client. Active network at-
tackers may be able to block such answers. Even if they do
not, Lucky 13 can not be blocked by MCookies, since each
tampered request will lead to a server-side TLS error, thus
breaking the connection. For POODLE, a lucky guess will
lead to a valid record, and the server will be able to send a
new cookie representation, which may still be blocked by the
attacker. So MCookies are inefficient against active attacks.

Apart from thwarting most of the attacks, MCookies have
the advantage of requiring only a small modification of the
HTTP server, leaving the browser and the web application
untouched, which makes it a reliable solution to deploy.

5.1.3 MCookies with Masked-Cookies headers
As MCookies, this extended mechanism fits the masking

principle. Moreover, since sensitive cookies are masked by
the browser, every request will be masked differently, even
in the presence of an active attacker: all the studied attacks
are covered by the countermeasure.

Moreover, this mechanism is backward compatible: it is
possible with the same HTTPS server to handle old and
new clients, taking advantage of the new Masked-Cookies

headers when available, but still defeating passive network
attacks with older clients.

5.2 Performance analysis

5.2.1 TLS Scrambling overhead analysis
Masking plaintext data at the TLS level is easy to im-

plement, and is completely transparent from the application
layer point of view. Yet, it presents two major drawbacks:

• each and every record has to be κ-byte longer, even for
short messages;

• deploying a new compression method in TLS would
be hard, since deploying new ciphersuites (an easier
operation) can take years.

Performance-wise, the CPU overhead is negligible, and
the network bandwidth overhead is less than 1 % in bytes.

5.2.2 MCookies network overhead analysis
At application level, the masking of cookie values increases

the HTTP requests and responses size by adding the mask
and the attributes to the initial cookie value and by sending
new headers. In order to quantify this overhead, we built a
script that simulates MCookies on a real internet navigation
traffic. It computes the overheads according to whether the
web browser used supports Masked-Cookies headers or not.

Raw Extra bandwidth
Traffic traffic w/o UA support with UA
type volume naive compr. support

Sensitive 24 MB +20.1 % +14.9 % +10.8 %
Overall 122 MB +4.1 % +3.0 % +2.2 %

Table 2: Network overhead evalulation

We instrumented a web browser (Chromium) to analyse
HTTP requests and responses from HTTPS secured traffic
obtained during the following one day scenario. The user
logs in Google, Facebook, Twitter, Dropbox, an RSS ag-
gregator, and some other web sites; he keeps tabs opened
on multiple pages for each services, uses them during the
day and browses other websites as well. 8,185 HTTP re-
quests (122 MB) were retrieved. Among these, 4,823 re-
quests (24 MB) actually set or sent sensitives cookies.

With this HTTP trace, the script processes sequentially
each request and simulates the overheads induced by in-
stalling the MCookie module on every reached host. We
identify every sensitive cookie by looking at the httpOnly

and secure flags. Table 2 describes the extra bandwidth
in different situations: without User-Agent support (that is
using MCookies), either with näıve or compressed encoding,
and with User-Agent support (the Masked-Cookies head-
ers). The results show a significant overhead on requests

containing sensitive cookies. However, when looking at the
big picture, the overall HTTPS traffic, this overhead turns
out to be rather small. Finally, compared to the entire web
communications, both HTTP and HTTPS, the cost induced
by cookie masking proves to be negligible.

5.2.3 Apache module system overhead analysis
To evaluate the efficiency of MCookies and assess their

scalability, we performed a web server benchmark with and
without the MCookies module enabled. In order to evaluate
the module overhead, we ran the benchmarking tool on a
single HTML page. Furthermore, we also benchmarked the
module on a Wordpress website for a more realistic scenario.
Each request sent embedded three different sentitive cookies.

The host used for this evaluation was an Intel Xeon X5650
with 6Go of RAM running a Debian system with an Apache
(v2.4.7) web server, a Mysql (v5.5) database server and host-
ing a Wordpress (v3.8.1) web site.

MCookies enabled
Vanilla w/o UA with UA
server support support

Static page 384 318 (-17 %) 382
Wordpress page 221 212 (-4 %) 220

Table 3: Performance results (transactions/second)

We used Siege12 in benchmark mode to assess the num-
ber of transactions the web server is capable to process per
second with the three scenarios. The results, as described in
Table 3, show a small decrease of 4 % of the Wordpress web
server capacity when dealing with User-Agents without the
support of this mechanism, whereas the overhead is negligi-
ble otherwise. However, for a static page served to a User-
Agent with no Masked-Cookie header support, performance
are much more degraded, but this is a worst-case scenario,
since static web sites rarely produce sensitive cookies.

6. RELATED WORK
To avoid repeating the same cookie across different TLS

messages, a natural idea would be to change its value for
every new connection, or at least to limit the cookie life-
time. In fact, PHP proposes a way to handle session iden-
tifiers this way with the session_regenerate_id function,
usually called after a user logged in, to decorrelate the old
and the new sessions and avoid session fixation attacks13.
Short-lived cookies (which could even be pushed to single-
use cookies) should thwart all passive attacks, but choos-
ing the right lifetime is not easy. In fact, mitigating at-
tacks would require a very short lifetime, which could easily
lead to out-of-sync cookies when dealing with parallel HTTP
connections. Modern web sites heavily use JavaScript asyn-
chronous requests, and session regenerations are known to
provoke requests concurrency errors14. This is why MCook-
ies are designed to always have the same intended value.

One-Time Cookies [7] are another solution to protect plain-
text HTTP cookies against replay, by having the client bind

12http://www.joedog.org/siege-home/
13http://www.acros.si/papers/session_fixation.pdf
14Our 1-day HTTPS capture actually contains such concur-
rent requests, that would be problematic.

the cookie with the request sent. This mechanism uses cryp-
tographic mechanisms (symmetric encryption and HMAC)
and borrows the idea of Kerberos tickets and proposes an
elegant solution requiring no server-side state. Applied to
HTTPS and our attacker model, One-Time Cookies (OTC)
do not counter attacks, since repeating the same exact re-
quest would lead to the same OTC; however, the value re-
trieved could only be replayed for the request in question,
which would limit the scope of the attacks. Moreover, as
OTC rely on specific HTTP headers, their implementation
requires browser and server/web application modifications.
With regard to the Record protocol attacks exposed here,
Masked-Cookie headers are much simpler to implement (no
cryptographic primitives are needed).

Both solutions (single-use cookies and One-Time Cookies)
are described in Table 1. Other alternative cookie protocols
have been proposed, such as [14, 20], but they share OTC
advantage (unique cookies bound to the request data) and
drawbacks (heavy changes needed on both end points).

7. CONCLUSION
We have studied recent attacks on TLS Record protocol,

and thoroughly analyzed the proposed countermeasures. In
practice, the countermeasures implemented in most of the
software are specific to each attack: 1/n−1 split for BEAST,
constant-time CBC decryption for Lucky 13, deprecation of
RC4, disabling TLS compression for CRIME and TIME, and
deprecation of SSLv3 for POODLE.

In parallel, we showed that all the attacks relied on the
common assumption that a secret would be repeatedly sent
in different TLS sessions. We suggested a common model to
describe these attacks. We also proposed to reuse the con-
cept of masking, borrowed from the side-channel commu-
nity, to mitigate the attacks. Such a technique can be im-
plemented as a complementary measure, a defense-in-depth
strategy. We described different ways this countermeasure
could be implemented, and wrote two proofs of concept to
check its feasibility to protect cookies.

At the TLS level, our Scramble compression method builds
on the idea of WebSockets masking, which actually blocked
the BEAST attack. At the HTTP level, our MCookies ex-
tend the idea of single-use cookies, without requiring com-
plex changes in web protocols and applications. Masking
allows for a defense-in-depth strategy, giving developers and
integrators more time to solve the crisis. It would have been
effective against the presented attacks, and might be against
yet unknown ones. The recent POODLE attack did in fact
meet all the criteria, and was published after we imple-
mented our proposals. The fact it would have been blocked
by our proofs of concept actually validates our work.

We would however make it clear that masking is designed
to be a defense-in-depth measure in addition to specific
countermeasures, not instead of them. When a cryptographic
algorithm or scheme shows significant weaknesses, they should
be phased out and correctly patched. In the particular case
of RC4, we now know a lot of statistical biases, some of which
can lead to efficient first order attacks, but realistic second
order attacks could be the next attack against TLS Record
layer. All the masking proposals could be easily extended
to use two (or three) masks instead of one. Yet we consider
RC4 is a good example of a streamcipher that should have
been phased out a long time ago, since many RC4 practical
and theoretical flaws have been known for a decade.

8. REFERENCES

[1] N. J. AlFardan, D. Bernstein, K. G. Paterson,
B. Poettering, and J. C. N. Schuldt. On the security of
RC4 in TLS and WPA. In USENIX Security, 2013.

[2] N. J. AlFardan and K. G. Paterson. Lucky Thirteen:
Breaking the TLS and DTLS Record Protocols. In
IEEE SSP, 2013.

[3] A. Barth. HTTP State Management Mechanism. RFC
6265, 2011.

[4] A. Barth. The Web Origin Concept. RFC 6454, 2011.

[5] D. Bernstein. ChaCha, a variant of Salsa20.
cr.yp.to/papers.html#chacha, 2008.

[6] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi.
Towards sound approaches to counteract
power-analysis attacks. In CRYPTO, 1999.

[7] I. Dacosta, S. Chakradeo, M. Ahamad, and
P. Traynor. One-time cookies: Preventing session
hijacking attacks with stateless authentication tokens.
ACM Trans. Internet Techn., 2012.

[8] T. Dierks and E. Rescorla. TLS Protocol Version 1.1.
RFC 4346, 2006.

[9] T. Dierks and E. Rescorla. TLS Protocol Version 1.2.
RFC 5246, 2008.

[10] T. Duong and J. Rizzo. BEAST: Surprising crypto
attack against HTTPS. Ekoparty, 2011.

[11] I. Fette and A. Melnikov. The WebSocket Protocol.
RFC 6455, 2011.

[12] S. Fluhrer and D. McGrew. Statistical Analysis of the
Alleged RC4 Keystream Generator. In FSE, 2000.

[13] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence,
P. Leach, A. Luotonen, and L. Stewart. HTTP
Authentication: Basic and Digest Access
Authentication. RFC 2617, 1999.

[14] K. Fu, E. Sit, K. Smith, and N. Feamster. The Dos
and Don’ts of Client Authentication on the Web. In
USENIX Security, 2001.

[15] L. Goubin and J. Patarin. DES and Differential Power
Analysis The ”Duplication” Method. In CHES, 1999.

[16] P. Gutmann. Encrypt-then-MAC for Transport Layer
Security (TLS) and Datagram Transport Layer
Security (DTLS). RFC 7366, 2014.

[17] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). RFC 6797, 2012.

[18] T. Isobe, T. Ohigashi, Y. Waatanabe, and M. Morii.
Full Plaintext Recovery Attack on Broadcast RC4. In
FSE, 2013.

[19] O. Levillain, A. Ebalard, H. Debar, and B Morin. One
Year of SSL Measurement. In ACSAC, 2012.

[20] A. X. Liu, J. M. Kovacs, C. Huang, and M. G. Gouda.
A Secure Cookie Protocol. In IEEE ICCCN, 2005.

[21] B. Möller. Security of CBC Ciphersuites in SSL/TLS:
Problems and Countermeasures, 2002-2004.

[22] B. Möller, T. Duong, and K. Kotowicz. Google
Security Advisory: This POODLE Bites: Exploiting
The SSL 3.0 Fallback, 2014.

[23] K. G. Paterson and N. J. AlFardan. Plaintext
Recovery Attacks Against DTLS. In NDSS, 2012.

[24] Y. N. Pettersen. Renego patched servers: A long-term
interoperability time bomb brewing. My Opera blog:
Implementer’s notes, 2010.

[25] A. Prado, N. Harris, and Y. Gluck. SSL, Gone in 30
seconds - A BREACH beyond CRIME. Black Hat
USA, 2013.

[26] E. Prouff and M. Rivain. Masking against side-channel
attacks: a formal security proof. In Eurocrypt, 2013.

[27] E. Rescorla and N. Modadugu. DTLS Version 1.2.
RFC 6347, 2012.

[28] I. Ristic. Internet SSL Survey, Talk at BlackHat 2010.
Black Hat USA, 2010.

[29] J. Rizzo and T. Duong. The CRIME attack. Ekoparty,
2012.

[30] P. Rogaway. IETF Draft: Problems with proposed IP
Cryptography, 1995.

[31] A. Stubblefield, J. Ioannidis, and A. Rubin. Using the
Fluhrer, Mantin, and Shamir Attack to Break WEP.
In NDSS, 2002.

[32] A. Shulman T. Be’ery. A Perfect CRIME? TIME Will
Tell. Black Hat EU, 2013.

[33] S. Vaudenay. Security Flaws Induced by CBC Padding
Applications to SSL, IPsec, WTLS. In Eurocrypt,
2002.

APPENDIX
A. HTTP BASIC/DIGEST AUTH

In this paper, we discussed cookie protection. Other meth-
ods exist to authenticate the client at the HTTP layer: Basic
and Digest Authentication [13]. In practice, they are rarely
used, as the user interfaces do not allow for a clean integra-
tion with modern web applications (e.g. no logout feature).

Both headers are as vulnerable as cookies w.r.t. the de-
scribed attacks. For Basic Authentication, it is not clear
how they could be randomized: there can be no equivalent
to MCookies, unless the mechanism is deeply changed. For
Digest Authentication however, the standard already allows
for possible randomizations resembling MCookies, produc-
ing a new server nonce value for each new request. Such
policy would defeat all passive network attacks, since the
client would produce a different header for each request.

B. SERVER-SIDE COMPRESSION

B.1 TIME and BREACH
In the TIME attack, in addition to targeting client-side

compression, the researchers proposed to target server-side
secret information repeatedly sent on the wire. For example,
Cross-Site Request Forgeries (CSRF) are usually blocked by
having the server insert a token in forms, which is later
checked on form submission. Such anti-CSRF tokens are
usually reused for a given user and a certain amount of time.

Server-side messages can be compressed using two differ-
ent mechanisms. In addition to the aforementioned TLS
compression, the server can also use HTTP compression.
This HTTP compression is also a target of the attack, as
the attacker can inject attacker-controlled data in the server
answer (preferably close to the targeted token in the pay-
load). This is the principle of the BREACH attack [25], an
attack aiming at retrieving the anti-CSRF token sent by the
server.

Hypotheses and prerequisites
• TLS or HTTP compression is activated;

• The ciphertext length is observable;

• The answer containing the target token is partially con-
trolled by the attacker, e.g. using a reflected field;

• Multiple connections containing the secret can be trig-
gered by the attacker.

Proposed countermeasures
Disable TLS and HTTP compression. As for client-
side compression, this measure blocks the attack. In fact,
TLS compression can be (and has been) disabled, but HTTP
compression is essential to reduce bandwidth and disabling
it would drastically increase the size of HTTP responses.

Randomize the packet length. See Sec. 2.2.
Structurally modify web applications to separate

secrets from attacker-controlled content. If sensitive
information and attacker-controlled content come from dif-
ferent servers, compression contexts are distinct and the at-
tack does not hold. Yet, this requires significant changes.

Change the token value for each request (single-
use token). It would block the attack but it also requires
an important change in the way anti-CSRF tokens usually
work.

B.2 MTokens: Making anti-CSRF tokens
To mitigate server-side attacks, the CSRF tokens (and

similar objects) could easily be protected using a technique
close to MCookies, i.e. by masking the token with a differ-
ent value for each message. The intended value of the to-
ken would remain the same, avoiding out-of-sync problems,
while randomizing the data that is sent over the network.
Implementing this would require very very small changes to
web applications (or even no change at all if web frameworks
are modified): it would simply amount to replacing every
call to the function producing the token (which we will call
write_csrftoken()) with mask(write_csrftoken()), and
each call to the function getting the token from the client
form (read_csrftoken()) with unmask(read_csrftoken()).

Security analysis
MTokens require small modifications in web applications (or
in frameworks), so they are easy to deploy, reliable and com-
patible with web applications, especially if the changes are
made in the framework. They are effective against server-
side first order attacks against anti-CSRF tokens in general.

C. TLS SCRAMBLING FUNCTION
The core of the Scramble compression method is the scram-

ble_record function (and unscramble_record, its counter-
part), which is implemented as follows

stat ic int s c ramble reco rd (COMPCTX ∗ctx ,
uchar ∗out , uint olen , uchar ∗ in , uint i l e n)

{
uchar mask [MSIZE] ;

i f (o l en < (i l e n + MSIZE)) return −1;
i f (RAND()−>bytes (mask , MSIZE) < 0) return −1;
memcpy (out , &mask , MSIZE) ;

out = out + MSIZE ;
for (int i = 0 ; i < i l e n ; i++)
∗(out++) = ∗(in++) ˆ mask . bytes [i % MSIZE] ;

return (i l e n + MSIZE) ;
}

