
Getting into the SMRAM:
SMM Reloaded

Loïc Duflot, Olivier Levillain,
Benjamin Morin and Olivier Grumelard

Central Directorate for
Information Systems Security

SGDN/DCSSI 51 boulevard de la Tour Maubourg 75007 Paris

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 2
http://www.ssi.gouv.fr

Introduction
• System Management Mode (SMM) is one of the x86 (and x86-64)

CPUs operating modes.
• It has been shown (CanSecWest 2006) how system management

mode could be used by attackers as a means for privilege
escalation.

• Additional details have been given by Ivanlef0u and Branco
(BSDDeamon) et al. in Phrack.

• A first SMM rootkit has been presented during Black Hat briefings
2008 (Sparks, Embleton).

• All these presentations/papers concluded that attackers could do
various interesting things (at least for them) if they were able to
modify the content of the so-called SMRAM, but that there were
limitations in practice.

• The goal of this presentation is to show that some of these
limitations can be overtaken.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 3
http://www.ssi.gouv.fr

Outline

• Introduction
• A (short) description of SMM
• Offensive use of SMM

• Potential uses: privilege escalation schemes, rootkits
• Limitations

• Circumventing the D_LCK bit
• Memory caching
• Cache poisoning
• Applications and demo

• Impact
• Countermeasures and conclusion

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 4
http://www.ssi.gouv.fr

Simplified PC architecture

Ethernet USB IDE

LPCPCI

Hub Link

Front Side Bus

RAMDisplay
Adapter

CPU

North-
Bridge

Southbridge

Chipset

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 5
http://www.ssi.gouv.fr

What is System Management Mode?

• A 16-bit mode.
• Used for motherboard control and power management, for

instance:
• Thermal management.
• Power management on laptops (sometimes called by

ACPI).
• Can only be entered when the CPU receives a so-called hardware

System Management Interrupt (SMI).
• SMIs are generated by the chipset (Northbridge).
• Writes to the Advanced Power Management Control

Register (AMPC) trigger a SMI (outl(something, 0xb2)).
• This can be done by anyone with input/output privileges.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 6
http://www.ssi.gouv.fr

System Management Mode entry

• Upon entry, almost every single CPU register is saved in a
“memory saved state map” that is itself stored into a memory
zone called SMRAM.

• SMRAM is located in RAM.
• An SMI handler is executed from SMRAM.
• When the SMI handler runs the “rsm” assembly language

instruction the CPU state is entirely restored from the map
saved in memory.

• The operating system does not even notice when it is being
interrupted by management software running in SMM.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 7
http://www.ssi.gouv.fr

• Specified in the SMBASE register of the CPU. This register cannot be
accessed at all. Its content is copied in the SMRAM saved state map and can
only be changed when the CPU state is restored.

• This is useful for multi-CPU systems.

• In practice SMBASE is usually :
• 0xa0000: legacy SMRAM location.
• 0xfeda0000 (+/- 0x8000): high SMRAM location.
• Something else: TSEG (Extended SMRAM)

• The base address of the SMI handler is SMBASE + 0x8000 (fixed offset).

Location of the SMRAM

0xa0000

????
SMBASE in

save state map

SMBASE in
CPU

SMI triggered

0xa0000

0xa0000

0xa0000

0xb0000

0xb0000

0xb0000

SMI handler
modifies

SMBASE in
saved state

SMI handler
runs rsm

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 8
http://www.ssi.gouv.fr

SMRAM security model

• System Management Mode code runs with full privileges on the
platform (even more privileged than operating system kernels).

• There is a need to prevent access to the SMRAM when the system
is not in SMM so that only the SMI handler can modify the
content of the SMRAM.

• The rule is thus that legacy, high SMRAM and TSEG can only be
accessed if the CPU is in System Management Mode unless the
D_OPEN bit is set in the chipset.

#pcitweak -r 0:0:0 0x9c
0x00b80a40

#pcitweak -r 0:0:0 0x9c
0x00b80a40

High SMRAM in useReserved|D_OPEN|D_CLS|D_LCK|Enable | 0 | 1 | 0
047Bit

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 9
http://www.ssi.gouv.fr

SMRAM protection mechanism

• The main mechanism to prevent modification of the SMI handler
is the D_LCK bit.

• If the D_LCK bit is set, configuration bits for the SMRAM in the
chipset become read only (D_OPEN bit included).

#pcitweak -r 0:0:0 0x9c
0x00b80a40
#pictweak -w 0:0:0 -b 0x9d 0x4a

#pcitweak -r 0:0:0 0x9c
0x00b84a40
#pictweak -w 0:0:0 -b 0x9d 0x0a

#pcitweak -r 0:0:0 0x9c
0x00b80a40
#pictweak -w 0:0:0 -b 0x9d 0x1a

#pcitweak -r 0:0:0 0x9c
0x00b81a40
#pictweak -w 0:0:0 -b 0x9d 0x5a

#pcitweak -r 0:0:0 0x9c
0x00b81a40

D_LCK bit

D_OPEN bit D_OPEN & D_LCK bit
Not(D_OPEN) & D_LCK bit

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 10
http://www.ssi.gouv.fr

Outline

• Introduction
• A (short) description of SMM
• Offensive use of SMM

• Potential uses: privilege escalation schemes, rootkits
• Limitations

• Circumventing the D_LCK bit
• Memory caching
• Cache poisoning
• Applications and demo

• Impact
• Countermeasures and conclusion

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 11
http://www.ssi.gouv.fr

Offensive use

• Privilege escalation schemes:
• See CanSecWest 2006 presentation.
• Actual privilege escalation schemes (restricted root to kernel,

restricted X server to kernel for instance).
• Rootkits:

• See Sparks, Embleton Black Hat 2008 presentation.
• Rootkits can hide functions in the SMI handler (example of a

keylogger).
• Bypass late launch restrictions on D-RTM based trusted platforms:

• See Rutkowska and Wojtczuk Black Hat Federal 2009 presentation.

• From that point on, we will consider that the attacker is willing to conceal a
rootkit in SMRAM.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 12
http://www.ssi.gouv.fr

Limitations

• SMM rootkits have strong limitations:
• They do not survive a reboot of the platform.
• It is difficult to design a generic SMM rootkit (SMM code

is specific to each platform).
• The strongest limitation (in my opinion): most recent

platforms set the D_LCK bit at boot time preventing
SMM modification.

• So far, no efficient way to bypass the D_LCK bit has been
presented.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 13
http://www.ssi.gouv.fr

Outline

• Introduction
• A (short) description of SMM
• Offensive use of SMM

• Potential uses: privilege escalation schemes, rootkits
• Limitations

• Circumventing the D_LCK bit
• Memory caching
• Cache poisoning
• Applications and demo

• Impact
• Countermeasures and conclusion

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 14
http://www.ssi.gouv.fr

Circumventing the D_LCK bit:
First idea, chipset translation

mechanisms
• Chipset translation mechanisms modify physical memory

mappings.
• Chipsets implement different translation mechanisms:

• See Duflot and Absil PacSec 2007 presentation on the
graphics aperture (GART) functionality.

• See Wojtczuk and Rutkowska presentations on the Q35
chipset during Blackhat 2008.

• But some chipset translation mechanisms are obsolete (GART).
• Translations tables can be locked (use of lock bits similar to the

D_LCK one).
• Need to come up with another (and better) idea:

• Cache poisoning.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 15
http://www.ssi.gouv.fr

Cache hierarchy

• To speed up memory accesses, caching is used.
• Description of the cache hierarchy of a x86 processor (example):

CPU CPU board Motherboard

M
M

U L1
Data
Cache

L2
Cache

S
ys

te
m

 M
em

or
y

Instruction
Cache

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 16
http://www.ssi.gouv.fr

Memory caching

• There is a need to synchronise CPU caches with memory.
Different memory caching strategy (memory types) can be
specified, for instance:

• WB: write back.
• WT: write through .
• UC: not cacheable.

• Which memory zones are cached and which are not is specified
in the memory management unit of the CPU (responsible for the
translation between logical, virtual and physical addresses).

• Two different mechanisms to specify memory caching
strategies: Page directories and tables (the hard way) and MTRR
(the easy way).

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 17
http://www.ssi.gouv.fr

Cached memory types

RAM
for instance

Data cache

MMU

CPU

Write

Write If write fails

0xffffffff
Cache invalidated

Write Through memory type

RAM
for instance

Data cache

MMU

CPU

Write

Write operations occur in cache.
Synchronisation is delayed

Write Back memory type

RAM
for instance

Data cache

MMU

CPU

Read

Read if
cache
misses

Read operation

Read from
Cache if possible

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 18
http://www.ssi.gouv.fr

• MTRRs (Memory Type Range Registers) are Model Specific
Registers (MSR). There are two different types, fixed and variable.

• “Fixed MTRRs” can be used to specify the caching strategy of
legacy memory areas used by the BIOS for instance.

• “Variable MTRRs” can be used to specify the caching strategy of
any physical memory zone.

• Structure of a fixed MTRR (example MTRR_FIX16K_A0000)

• Structure of a variable MTRR (example (MTRR_PHYS_BASE0)

Use of MTRRs

Type B8-BA Type B4-B8 Type B0-B4 Type B0-AA Type AA-A8 Type A8-A4 Type A0-A4Type BA-C0
63 0

Physical Base address of the memory zone Reserved Type

Mask: indicates the size Valid Reserved

63 0

63 0

IA32_MTRR_PHYS_BASE0

IA32_MTRR_PHYS_MASK0 111235
Reserved

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 19
http://www.ssi.gouv.fr

So…

• The access control point is in the chipset and the chipset does
not “see” what happens inside the cache.

• Code running on the CPU can decide the caching strategy.
• Plus, the chipset does not even know where the SMRAM really

is (SMBASE only known to the CPU).

• Isn’t there a coherency problem here?

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 20
http://www.ssi.gouv.fr

SMRAM and caching

• It is advised that SMRAM should not be cached especially when
the SMRAM address space conflicts with other address spaces
(legacy SMRAM).

• Exception: it is explicitly stated in chipset documentation that
high SMRAM (0xfeda0000) can be cached.

• Let’s assume that the SMRAM memory zone is cached in WB
by the CPU. If the SMI handler is executed, it will be “copied”
into the CPU instruction and data caches.

• If SMM handlers do not flush caches when they give the hand
back to the operating system, it is likely that the SMI handlers
will linger (for a very small time) in the data cache of the CPU.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 21
http://www.ssi.gouv.fr

Basic idea: SMI handler stays in
cache

MMU

Cache

CPU

SMI handler

MMU

CPU

SMI triggered

SMRAM SMRAM

D_LCK protection

rsm

MMU

CPU

SMRAM

D_LCK protection

Protected mode SMM Protected mode

SMI handler stays
in cache

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 22
http://www.ssi.gouv.fr

Basic idea: attacker writes to the
SMRAM

• When the CPU is not in SMM, the CPU cannot write in
SMRAM. But if the SMRAM is cached in Write Back mode, the
CPU only writes to the cached version and not in memory.

MMU

CPU

SMRAM

D_LCK protection

Protected mode

SMI handler stays
in cache

Attacker writes to SMRAM

MMU

CPU

SMRAM

D_LCK protection

Protected mode

Modified SMI
handler

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 23
http://www.ssi.gouv.fr

Scheme to circumvent the D_LCK
bit: cache poisoning

• We assume that a rootkit wants to conceal some functions within
the SMRAM but the D_LCK bit is set and that as a consequence
SMRAM cannot be accessed except in SMM.

• The attacker has to modify the caching strategy of the SMRAM
location (example if SMBASE=0xa0000).

• Trigger an SMI. The SMI handler will be cached by the CPU.

• Modify the memory content at SMRAM address (only the
cached image is modified).

May be skipped in practice

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 24
http://www.ssi.gouv.fr

Scheme to circumvent the D_LCK
bit: cache poisoning (2/2)

• Trigger a SMI. This time the modified image is executed from
the cache.

• Objection: But wait! Only the data cache is modified, not the
instruction cache, so the modification should have no effect.

• True, but the instruction caches will probably be flushed
during mode transitions as running 16-bit instructions in a
32-bit (or 64-bit) mode should not be advised. In that case,
instructions are reloaded from… the L1 data cache.

• Conclusion: modification of the SMI handler succeeded even
though the D_CLK bit is set.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 25
http://www.ssi.gouv.fr

No way!

• The SMI handler can flush the cache before exiting!
• No SMI handler that I have seen does that.
• Anyway if the handler did so it would not be a major problem as cache

flushing only ensures SMI handler confidentiality (not integrity).
• Data caches are small, the whole SMRAM won’t probably fit in it!

• True.
• Data are not bound to stay for too long in the data cache so the attacker needs a

way to either:
• Ensure that the SMI handler stays permanently in the data cache

(periodic accesses to the handler for instance).
• Or find a way for the SMI handler to permanently stay in memory (not

only in cache).

• Overall, we need to rethink our attack scheme for it to be usable.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 26
http://www.ssi.gouv.fr

A more efficient scheme
(example for legacy SMRAM)

Original SMI handler
Physical memory

0xa8000

SMBASE= 0xa0000

CPU SMBASE register
(SMI handler base address SMBASE+0x8000)

SMBASE + 0x8000

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 27
http://www.ssi.gouv.fr

A more efficient scheme
(example for legacy SMRAM)

Original SMI handler
Physical memory

Space available in memory

AC

0xa8000

SMBASE= 0xa0000

CPU SMBASE register
(SMI handler base address SMBASE+0x8000)

SMBASE + 0x8000

Attack handler : Modified copy of the original handler or crafted hander

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 28
http://www.ssi.gouv.fr

A more efficient scheme
(example for legacy SMRAM)

Original SMI handler
Physical memory

Attack handler : Modified copy of the original handler or crafted hander

Space available in memory

AC

0xa8000

Modifiy the caching strategy : WB

SMBASE= 0xa0000

CPU SMBASE register
(SMI handler base address SMBASE+0x8000)

SMBASE + 0x8000

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 29
http://www.ssi.gouv.fr

A more efficient scheme
(example for legacy SMRAM)

Original SMI handler
Physical memory

Attack handler : Modified copy of the original handler or crafted hander

Space available in memory

AC

0xa8000 Modify saved value of SMBASE
mov Ac-0x8000 , %eax
mov %eax, %cs:0xfec8

Modifiy the caching strategy : WB

SMBASE= 0xa0000

CPU SMBASE register
(SMI handler base address SMBASE+0x8000)

SMBASE + 0x8000

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 30
http://www.ssi.gouv.fr

A more efficient scheme
(example for legacy SMRAM)

Original SMI handler
Physical memory

Attack handler : Modified copy of the original handler or crafted hander

Space available in memory

AC

0xa8000 Modify saved value of SMBASE
mov Ac-0x8000 , %eax
mov %eax, %cs:0xfec8

Modifiy the caching strategy : WB

SMBASE= 0xa0000

CPU SMBASE register
(SMI handler base address SMBASE+0x8000)

SMI triggered

SMBASE + 0x8000

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 31
http://www.ssi.gouv.fr

A more efficient scheme
(example for legacy SMRAM)

Original SMI handler
Physical memory

Attack handler : Modified copy of the original handler or crafted hander

Space available in memory

AC

0xa8000 Modify saved value of SMBASE
mov Ac-0x8000 , %eax
mov %eax, %cs:0xfec8

Modifiy the caching strategy : WB

CPU SMBASE register
(SMI handler base address SMBASE+0x8000)

SMBASE= AC- 0x8000

SMBASE + 0x8000

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 32
http://www.ssi.gouv.fr

A more efficient scheme
(example for legacy SMRAM)

Original SMI handler
Physical memory

Attack handler : Modified copy of the original handler or crafted hander

Space available in memory

AC

CPU SMBASE register
(SMI handler base address SMBASE+0x8000)

0xa8000

SMBASE= AC- 0x8000

SMI triggered

New handler executed

SMBASE + 0x8000

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 33
http://www.ssi.gouv.fr

A more efficient scheme

• Modify the caching strategy of the SMRAM (same as before).
• Copy the “attack” SMI handler in a free (unused) RAM location. We will

call C this copy and AC the address of the copy.
• For instance by copying it from the data cache after an SMI has been

triggered.
• Or a valid SMRAM handler can be crafted.

• Modify the original handler O (in cache). The handler should modify the
SMBASE value in the save state of the CPU so that SMBASE = AC –
0x8000. The modification is small (less than 20 bytes and fits in the cache).

• By crafting a new handler that will do that.
• By hooking the original handler.

• We call M this modified handler. That’s the only time when the
cache is actually needed

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 34
http://www.ssi.gouv.fr

A more efficient scheme (2/2)

• Trigger an SMI. M is executed. Upon execution of the “rsm”
assembly language instruction, the SMBASE register will be set
to AC – 0x8000.

• When the next SMI is triggered, the CPU will determine that the
new SMRAM location is SMBASE +0x8000 = AC, and the
“attack” SMI handler “C” will be executed from memory.

• The thing is, this area is not at all protected by the D_LCK bit.
So the attacker can freely modify the new SMI handler C, even
though the D_LCK bit is set.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 35
http://www.ssi.gouv.fr

Stealth

• If a write back cycle occurs, M will be written to SMRAM, and
O will be overwritten.

• But if the attacker invalidates cache lines where M is stored
(using the “clflush” or “invd” assembly language instructions
for instance), relocation occurs without any write back cycle to
SMRAM being issued.

• This way, O is not modified at all during the course of the
relocation.

• OEM SMI handler code did not change but is not used any more
should an SMI be triggered.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 36
http://www.ssi.gouv.fr

Difficulties

• The scheme requires modification of the CPU caching strategy
and thus requires ring 0 privileges (only useful to kernel level
rootkits).

• It requires the attacker to locate the SMI handler (i.e. determine
SMBASE, explanations later).

• On multi-CPU architectures each CPU may use a different
SMRAM and thus a different SMI handler. Which of them will
be called when an SMI is triggered is not specified in the
specifications.

• The attacker will have either to modify all of them,
• or to modify only one of them and wait until this

particular one is run.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 37
http://www.ssi.gouv.fr

TSEG

High
SMRAM

Legacy
SMRAM

Modify memory type
To WB

Physical addresses
Memory space

Trigger an SMI Rsm is run

SMBASE (unknown to the attacker)

Saved state map lingers in cache.
SMBASE is determined by substracting a
well known offset to the base address of
the saved state map.

Guessing SMBASE: methodology

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 38
http://www.ssi.gouv.fr

Summary

• It is possible for an attacker with sufficient privileges (i.e. a kernel
rootkit given the fact that the attack requires modifying MMU
structures and CPU cache strategy), to modify the content of the
SMRAM even though the D_LCK bit is set.

• We tried our scheme on different machines from different
manufacturers (laptops, desktops, servers using either TSEG, high
or legacy SMRAM) and it worked against all of them.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 39
http://www.ssi.gouv.fr

Why did it work?

• System Management Mode is a CPU mode. The CPU determines
which code runs in SMM.

• The “D_LCK bit” is a chipset security mechanism. This mechanism
can only protect memory that is accessible from the chipset.

• Only the CPU knows what is stored inside SMBASE i.e. where
SMRAM really is. The chipset can only protect the memory zone
where it “thinks” SMRAM is.

• The chipset only knows the CPU is in SMM because the CPU is
telling it is.

• Is all this coherent? The security model seems to be flawed: two
different mechanisms to circumvent this particular security
mechanism have been proposed so far.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 40
http://www.ssi.gouv.fr

Outline

• Introduction
• A (short) description of SMM
• Offensive use of SMM

• Potential uses: privilege escalation schemes, rootkits
• Limitations

• Circumventing the D_LCK bit
• Memory caching
• Cache poisoning
• Applications and demo

• Impact
• Countermeasures and conclusion

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 41
http://www.ssi.gouv.fr

Impact of the scheme

• The scheme we proposed can be used by an attacker to overload any chipset
protected area.

• System Management RAM.
• System ROM (BIOS for instance).

• PCI integrity scanners or chipset-based integrity scanners such as DeepWatch
(proposed by Yuryi Buligin during Blackhat 2008) can be fooled :

• DeepWatch is a generic chipset-based integrity scanner that can be
used to monitor SMRAM integrity.

• Deepwatch can check whether the SMRAM is modified.
• But DeepWatch cannot know what SMBASE is so SMRAM

relocation using our scheme will be invisible to DeepWatch.
• DeepWatch will keep on checking the integrity of the memory

location where it “thinks” SMRAM is when the attacker has defined
another handler somewhere else in memory.

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 42
http://www.ssi.gouv.fr

Impact on HyperGuard

• The goal of HyperGuard is to include security functions in the
SMI handler.

• Joint work (under progress) between “the Invisible Thing” and
“Phoenix BIOS”.

• Presented during the Blackhat 2008 forum by Joanna
Rutkowska and Rafal Wotjczuk.

• The scheme we propose can be used by an attacker to remove
Hyperguard in the relocated SMI handler.

• Efficient even when HyperGuard and DeepWatch are
combined!

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 43
http://www.ssi.gouv.fr

Outline

• Introduction
• A (short) description of SMM
• Offensive use of SMM

• Potential uses: privilege escalation schemes, rootkits
• Limitations

• Circumventing the D_LCK bit
• Memory caching
• Cache poisoning
• Applications and demo

• Impact
• Countermeasures and conclusion

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 44
http://www.ssi.gouv.fr

Countermeasures

• The only efficient solution is for CPU designers to modify the CPU.
• Indeed, platform manufacturers could:

• Ensure that the SMI handler flushes data caches before
exiting (each “rsm” instruction should be preceded by a
cache flush instruction). But this only ensures SMI handler
confidentiality…

• Or randomly relocate SMRAM at boot time. This is not
really efficient (security by obscurity).

• What can the end user do?
• Prevent the system from being taken over by rootkits (that is

the best workaround…).

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 45
http://www.ssi.gouv.fr

From the vendors perspective

• Intel® has been contacted (September 2008) and acknowledged
(private communication) that the problem was generic.

• However, they stated that they noticed the problem earlier and
solved the problem in the Conroe CPU timeframe (2007-2008)
with a CPU modification. Patents have been filed.

• But completely solving the problem requires OEMs to take
advantage of the new CPU mechanism, which has not been
done that much so far (according to Intel® some of them
already did).

• Intel® expects machines from different OEMs to be protected
first trimester 2009 (in the Intel® Nehalem CPU timeframe).

• But what about the billions (?) of machine already shipped?

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 46
http://www.ssi.gouv.fr

Overall conclusion

• As a conclusion, we showed that it was possible for a rootkit to
conceal functions in the SMI handler even on recent machines
when the D_LCK bit mechanism is correctly used.

• The proof of concept schemes exploit a global design flaw in the
repartition of security functions between chipsets and CPUs.

• The only efficient solution against the problem is CPU
modification (recent CPU are already modified).

Loïc Duflot – SGDN/ DCSSI – SMM Reloaded – CanSecWest 2009 47
http://www.ssi.gouv.fr

Contact address:

Thank you for your attention
Any questions?

Spécial thanks to:
Olivier Grumelard (SGDN/DCSSI)

Olivier Levillain (SGDN/DCSSI)
Benjamin Morin (SGDN/DCSSI)

And the Intel Security Incident Response Team

See also (independent research work):
http://theinvisiblethingsblogspot.com/ (Joanna Rutkowska and Rafal Wojtczuk)

	Getting into the SMRAM:�SMM Reloaded
	Introduction
	Outline
	Simplified PC architecture
	What is System Management Mode?
	System Management Mode entry
	Location of the SMRAM
	SMRAM security model
	SMRAM protection mechanism
	Outline
	Offensive use
	Limitations
	Outline
	Circumventing the D_LCK bit:�First idea, chipset translation mechanisms
	Cache hierarchy
	Memory caching
	Cached memory types
	Use of MTRRs
	So…
	SMRAM and caching
	Basic idea: SMI handler stays in cache
	Basic idea: attacker writes to the SMRAM
	Scheme to circumvent the D_LCK bit: cache poisoning
	Scheme to circumvent the D_LCK bit: cache poisoning (2/2)
	No way!
	A more efficient scheme�(example for legacy SMRAM)
	A more efficient scheme�(example for legacy SMRAM)
	A more efficient scheme�(example for legacy SMRAM)
	A more efficient scheme�(example for legacy SMRAM)
	A more efficient scheme�(example for legacy SMRAM)
	A more efficient scheme�(example for legacy SMRAM)
	A more efficient scheme�(example for legacy SMRAM)
	A more efficient scheme
	A more efficient scheme (2/2)
	Stealth
	Difficulties
	Guessing SMBASE: methodology
	Summary
	Why did it work?
	Outline
	Impact of the scheme
	Impact on HyperGuard
	Outline
	Countermeasures
	From the vendors perspective
	Overall conclusion

