
The (In)security of Network Protocol Implementations

Olivier Levillain

Séminaire Sotern
9 février 2023

O. Levillain Protocol Implementation (In)security 1/30

/me

Career
I Internship in cryptography on a hash function (2006)
I Member of the “system” lab at ANSSI (2007-2012)
I Head of the “network” lab at ANSSI (2012-2015)
I Head of the training center at ANSSI (2015-2018)
I Associate Professor at Télécom SudParis (2018-)

Research
I Contribution to the study of low-level x86 mechanisms
I PhD thesis on SSL/TLS
I Interest in programming languages
I Work on parsers and network protocol implementations

O. Levillain Protocol Implementation (In)security 2/30

/me

Career
I Internship in cryptography on a hash function (2006)
I Member of the “system” lab at ANSSI (2007-2012)
I Head of the “network” lab at ANSSI (2012-2015)
I Head of the training center at ANSSI (2015-2018)
I Associate Professor at Télécom SudParis (2018-)

Research
I Contribution to the study of low-level x86 mechanisms
I PhD thesis on SSL/TLS
I Interest in programming languages
I Work on parsers and network protocol implementations

O. Levillain Protocol Implementation (In)security 2/30

Parsing Network Messages

Parsing Network Messages

TLS in a Slide
Client Serveur

ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Données applicatives

TLS Goals
I Authenticate the server
I Establish a shared secret
I Protect application data in

confidentiality and integrity

1994

SSLv2

1995

SSLv3

1999

TLS 1.0

2006

TLS 1.1

2008

TLS 1.2

2018

TLS 1.3

More information on TLS in [PhD16] et [CRiSIS20]
O. Levillain Protocol Implementation (In)security 4/30

Parsing Network Messages

Parsing TLS Messages (1/2)

C
h

a
n

g
e

C
ip

h
e

r
S

p
ec

Level

Type

A
le

rt
A

p
plica

tio
n

D
a

ta

Type

Version

Length

R
e

co
rd

 la
ye

r

Type

Length

H
an

d
sh

a
ke

 p
ro

to
co

l
defines the

content type of

contains

...

Version

Random

Session
Id

C
lie

n
t H

e
llo

Length

defines the
size of

Cipher-
suites

Size

...

Certificate

C
ertifica

t e

Length

Certificate

Length

15 other
Handshake

message types
...

S
e

rve
r K

e
y

E
xch

a
n

g
e

Negotiated
ciphersuite

...

Version

Serial

Validity

X
.5

0
9

 C
e

rtifica
te

Issuer

Public
Key

Subject

ASN.1 DER

3 SKE
messages types

O. Levillain Protocol Implementation (In)security 5/30

Parsing Network Messages

Parsing TLS Messages (2/2)

But parsing TLS messages is hard
I Many complex structures, especially in Handshake messages

I OK, let’s only consider record parsing, splitting and merging

I Interactions with cryptographic algorithms

I OK, let’s just look at the cleartext messages at the start of a connection

O. Levillain Protocol Implementation (In)security 6/30

Parsing Network Messages

Parsing TLS Messages (2/2)

But parsing TLS messages is hard
I Many complex structures, especially in Handshake messages

I OK, let’s only consider record parsing, splitting and merging
I Interactions with cryptographic algorithms

I OK, let’s just look at the cleartext messages at the start of a connection

O. Levillain Protocol Implementation (In)security 6/30

Parsing Network Messages

Parsing TLS Messages (2/2)

But parsing TLS messages is hard
I Many complex structures, especially in Handshake messages

I OK, let’s only consider record parsing, splitting and merging
I Interactions with cryptographic algorithms

I OK, let’s just look at the cleartext messages at the start of a connection

O. Levillain Protocol Implementation (In)security 6/30

Parsing Network Messages

TLS Records — The Good
From SSLv3 to the latest versions of TLS, TLS messages are transported
using records

Type

1

Version

2

Length L

2

Record Content

L

The records can transport different types of messages
I Handshake
I Alert
I ChangeCipherSpec (mostly removed with TLS 1.3)
I ApplicationData
I Hearbeat (available via an extension)

How hard can it be to parse records and send them to the right handler?

O. Levillain Protocol Implementation (In)security 7/30

Parsing Network Messages

TLS Records — The Good
From SSLv3 to the latest versions of TLS, TLS messages are transported
using records

Type

1

Version

2

Length L

2

Record Content

L

The records can transport different types of messages
I Handshake
I Alert
I ChangeCipherSpec (mostly removed with TLS 1.3)
I ApplicationData
I Hearbeat (available via an extension)

How hard can it be to parse records and send them to the right handler?

O. Levillain Protocol Implementation (In)security 7/30

Parsing Network Messages

TLS Records — The Good
From SSLv3 to the latest versions of TLS, TLS messages are transported
using records

Type

1

Version

2

Length L

2

Record Content

L

The records can transport different types of messages
I Handshake
I Alert
I ChangeCipherSpec (mostly removed with TLS 1.3)
I ApplicationData
I Hearbeat (available via an extension)

How hard can it be to parse records and send them to the right handler?

O. Levillain Protocol Implementation (In)security 7/30

Parsing Network Messages

TLS Records — The Bad (1/2)
Handshake messages can be longer than the record transporting them

Long Handshake Message

Long Handshake Message

HS V L Long Handshake HS V L Message

Multiple Handshake messages can also be grouped in the same record

M1 M2

HS V L M1 M2

O. Levillain Protocol Implementation (In)security 8/30

Parsing Network Messages

TLS Records — The Bad (1/2)
Handshake messages can be longer than the record transporting them
I Handshake length is defined by a 24-bit field
I Record length is defined by a 16-bit field

I Such messages must then be split across several records
Long Handshake Message

Long Handshake Message

HS V L Long Handshake HS V L Message

Multiple Handshake messages can also be grouped in the same record
M1 M2

HS V L M1 M2

O. Levillain Protocol Implementation (In)security 8/30

Parsing Network Messages

TLS Records — The Bad (1/2)
Handshake messages can be longer than the record transporting them
I Handshake length is defined by a 24-bit field
I Record length is defined by a 16-bit field
I Such messages must then be split across several records

Long Handshake Message

Long Handshake Message

HS V L Long Handshake HS V L Message

Multiple Handshake messages can also be grouped in the same record
M1 M2

HS V L M1 M2

O. Levillain Protocol Implementation (In)security 8/30

Parsing Network Messages

TLS Records — The Bad (1/2)
Handshake messages can be longer than the record transporting them

Long Handshake Message

Long Handshake Message

HS V L Long Handshake HS V L Message

Multiple Handshake messages can also be grouped in the same record

M1 M2

HS V L M1 M2

O. Levillain Protocol Implementation (In)security 8/30

Parsing Network Messages

TLS Records — The Bad (1/2)
Handshake messages can be longer than the record transporting them

Long Handshake Message

Long Handshake Message

HS V L Long Handshake HS V L Message

Multiple Handshake messages can also be grouped in the same record

M1 M2

HS V L M1 M2

O. Levillain Protocol Implementation (In)security 8/30

Parsing Network Messages

TLS Records — The Bad (2/2)
Other messages must fit exactly in one record

Alert

A V L Alert

Actually, this was only specified this way recently... following a report from
the Inria Prosecco team in 2012 about a strange OpenSSL behavior

Source: https://www.mitls.org/pages/attacks/Alert

O. Levillain Protocol Implementation (In)security 9/30

https://www.mitls.org/pages/attacks/Alert

Parsing Network Messages

TLS Records — The Bad (2/2)
Other messages must fit exactly in one record

Alert

A V L Alert

Actually, this was only specified this way recently...

following a report from
the Inria Prosecco team in 2012 about a strange OpenSSL behavior

Source: https://www.mitls.org/pages/attacks/Alert

O. Levillain Protocol Implementation (In)security 9/30

https://www.mitls.org/pages/attacks/Alert

Parsing Network Messages

TLS Records — The Bad (2/2)
Other messages must fit exactly in one record

Alert

A V L Alert

Actually, this was only specified this way recently... following a report from
the Inria Prosecco team in 2012 about a strange OpenSSL behavior

Source: https://www.mitls.org/pages/attacks/Alert

O. Levillain Protocol Implementation (In)security 9/30

https://www.mitls.org/pages/attacks/Alert

Parsing Network Messages

TLS Records — The Ugly (1/2)
Hearbeat messages (RFC 6520) are variable-length messages
I Keep-alive messages that should be echoed
I The variable length is for Path MTU Discovery

HB V L
T

1

`

2

Content

`

Padding

≥ 16

What should we do when L < ` + 19?
I Reject the record

I Wait for the next record to get the complete Heartbeat message
I do as if everything was OK and read beyond the end of the

record

The RFC did not clearly state that a Heartbeat record must contain exactly
one message...

O. Levillain Protocol Implementation (In)security 10/30

Parsing Network Messages

TLS Records — The Ugly (1/2)
Hearbeat messages (RFC 6520) are variable-length messages

HB V L
T

1

`

2

Content

`

Padding

≥ 16

What should we do when L < ` + 19?
I Reject the record

I Wait for the next record to get the complete Heartbeat message
I do as if everything was OK and read beyond the end of the

record

The RFC did not clearly state that a Heartbeat record must contain exactly
one message...

O. Levillain Protocol Implementation (In)security 10/30

Parsing Network Messages

TLS Records — The Ugly (1/2)
Hearbeat messages (RFC 6520) are variable-length messages

HB V L
T

1

`

2

Content

`

Padding

≥ 16

What should we do when L < ` + 19?
I Reject the record

I Wait for the next record to get the complete Heartbeat message
I do as if everything was OK and read beyond the end of the

record

The RFC did not clearly state that a Heartbeat record must contain exactly
one message...

O. Levillain Protocol Implementation (In)security 10/30

Parsing Network Messages

TLS Records — The Ugly (1/2)
Hearbeat messages (RFC 6520) are variable-length messages

HB V L
T

1

`

2

Content

`

Padding

≥ 16

What should we do when L < ` + 19?
I Reject the record
I Wait for the next record to get the complete Heartbeat message

I do as if everything was OK and read beyond the end of the
record

The RFC did not clearly state that a Heartbeat record must contain exactly
one message...

O. Levillain Protocol Implementation (In)security 10/30

Parsing Network Messages

TLS Records — The Ugly (1/2)
Hearbeat messages (RFC 6520) are variable-length messages

HB V L
T

1

`

2

Content

`

Padding

≥ 16

What should we do when L < ` + 19?
I Reject the record
I Wait for the next record to get the complete Heartbeat message
I do as if everything was OK and read beyond the end of the

record

The RFC did not clearly state that a Heartbeat record must contain exactly
one message...

O. Levillain Protocol Implementation (In)security 10/30

Parsing Network Messages

TLS Records — The Ugly (2/2)
In a TLS connection, the first message sent by the client is ClientHello
I It starts with the Handshake Type (1 byte)
I Then, it contains the Handshake Length (3 bytes)
I The actual ClientHello starts with the maximum supported version

Record splitting before the protection is activated is not authenticated
I Only the stream of Handshake messages are authenticated

OpenSSL requires to know from the first message which TLS version the
client is advertizing

What happens when an attacker splits the ClientHello over very small
chunks (less than 6 bytes) ?
I OpenSSL assumes the client version is TLS 1.0
I This can not be detected or forbidden
I CVE-2014-3511 (Downgrade Attack)

O. Levillain Protocol Implementation (In)security 11/30

Parsing Network Messages

TLS Records — The Ugly (2/2)
In a TLS connection, the first message sent by the client is ClientHello
I It starts with the Handshake Type (1 byte)
I Then, it contains the Handshake Length (3 bytes)
I The actual ClientHello starts with the maximum supported version

Record splitting before the protection is activated is not authenticated
I Only the stream of Handshake messages are authenticated

OpenSSL requires to know from the first message which TLS version the
client is advertizing

What happens when an attacker splits the ClientHello over very small
chunks (less than 6 bytes) ?
I OpenSSL assumes the client version is TLS 1.0
I This can not be detected or forbidden
I CVE-2014-3511 (Downgrade Attack)

O. Levillain Protocol Implementation (In)security 11/30

Parsing Network Messages

TLS Records — The Ugly (2/2)
In a TLS connection, the first message sent by the client is ClientHello
I It starts with the Handshake Type (1 byte)
I Then, it contains the Handshake Length (3 bytes)
I The actual ClientHello starts with the maximum supported version

Record splitting before the protection is activated is not authenticated
I Only the stream of Handshake messages are authenticated

OpenSSL requires to know from the first message which TLS version the
client is advertizing

What happens when an attacker splits the ClientHello over very small
chunks (less than 6 bytes) ?
I OpenSSL assumes the client version is TLS 1.0
I This can not be detected or forbidden
I CVE-2014-3511 (Downgrade Attack)

O. Levillain Protocol Implementation (In)security 11/30

Parsing Network Messages

TLS Records — The Ugly (2/2)
In a TLS connection, the first message sent by the client is ClientHello
I It starts with the Handshake Type (1 byte)
I Then, it contains the Handshake Length (3 bytes)
I The actual ClientHello starts with the maximum supported version

Record splitting before the protection is activated is not authenticated
I Only the stream of Handshake messages are authenticated

OpenSSL requires to know from the first message which TLS version the
client is advertizing

What happens when an attacker splits the ClientHello over very small
chunks (less than 6 bytes) ?
I OpenSSL assumes the client version is TLS 1.0
I This can not be detected or forbidden
I CVE-2014-3511 (Downgrade Attack)

O. Levillain Protocol Implementation (In)security 11/30

Parsing Network Messages

Discussions About Message Parsing
TLS record parsing
I A seemingly simple problem
I That triggered many interesting bugs

What about more complex protocols such as QUIC?
I Variable integer fields
I QUIC crypto frames can be split and contain an Offset fields (leading

to potential reassembly issues)
I A convoluted encryption scheme

What about complex file formats such as PDF?
I ...

More information on QUIC in [WISTP19] and on PDF in [LangSec17]
More information on TLS in [PhD16] et [CRiSIS20]

O. Levillain Protocol Implementation (In)security 12/30

Parsing Network Messages

Discussions About Message Parsing
TLS record parsing
I A seemingly simple problem
I That triggered many interesting bugs

What about more complex protocols such as QUIC?
I Variable integer fields
I QUIC crypto frames can be split and contain an Offset fields (leading

to potential reassembly issues)
I A convoluted encryption scheme

What about complex file formats such as PDF?
I ...

More information on QUIC in [WISTP19] and on PDF in [LangSec17]
More information on TLS in [PhD16] et [CRiSIS20]

O. Levillain Protocol Implementation (In)security 12/30

Parsing Network Messages

Discussions About Message Parsing
TLS record parsing
I A seemingly simple problem
I That triggered many interesting bugs

What about more complex protocols such as QUIC?
I Variable integer fields
I QUIC crypto frames can be split and contain an Offset fields (leading

to potential reassembly issues)
I A convoluted encryption scheme

What about complex file formats such as PDF?
I ...

More information on QUIC in [WISTP19] and on PDF in [LangSec17]
More information on TLS in [PhD16] et [CRiSIS20]

O. Levillain Protocol Implementation (In)security 12/30

State Machines Gone Crazy

State Machines Gone Crazy

An Example of a Problematic TLS State Machine
Client Serveur

ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Données applicatives

In TLS 1.3, the expected message flow is the fol-
lowing
I The server identifies itself (Certificate)
I It proves is identity (CertificateVerify)
I This message contains a signature requiring

access to the server private key

What happens if a client accepts a connection where the
CertificateVerify is missing?
I It is not necessary anymore to know the private key to make the

handshake work
I An attacker can impersonate any server with such a client

Work with AT. Rasoamanana in the GASP project [RESSI20, ESORICS22]
O. Levillain Protocol Implementation (In)security 14/30

State Machines Gone Crazy

An Example of a Problematic TLS State Machine
Client Serveur

ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Données applicatives

In TLS 1.3, the expected message flow is the fol-
lowing
I The server identifies itself (Certificate)
I It proves is identity (CertificateVerify)
I This message contains a signature requiring

access to the server private key

What happens if a client accepts a connection where the
CertificateVerify is missing?
I It is not necessary anymore to know the private key to make the

handshake work
I An attacker can impersonate any server with such a client

Work with AT. Rasoamanana in the GASP project [RESSI20, ESORICS22]
O. Levillain Protocol Implementation (In)security 14/30

State Machines Gone Crazy

State Machine Representation

Traditional Representation
I The “serpent” diagram
I Only show the happy path

Informal State Machine
I A formalization effort
I Here, the client perspective
I Some ambiguities remain

Mealy Machine
I A more formal description
I Heavier representation

Client Serveur
ClientHello+ ClientKeyShare ext.

ServerHello

+ ServerKeyShare ext.

EncryptedExtensions

Certificate

CertificateVerify

Finished

Finished

Données applicatives

O. Levillain Protocol Implementation (In)security 15/30

State Machines Gone Crazy

State Machine Representation

Traditional Representation
I The “serpent” diagram
I Only show the happy path

Informal State Machine
I A formalization effort
I Here, the client perspective
I Some ambiguities remain

Mealy Machine
I A more formal description
I Heavier representation

— RFC 8446 (TLS 1.3) Appendix A

O. Levillain Protocol Implementation (In)security 15/30

State Machines Gone Crazy

State Machine Representation

Traditional Representation
I The “serpent” diagram
I Only show the happy path

Informal State Machine
I A formalization effort
I Here, the client perspective
I Some ambiguities remain

Mealy Machine
I A more formal description
I Heavier representation

0

 - / ClientHello

F

 * / Alert

1

ServerHello / -

 * / Alert

2

EncryptedExtensions / -

 * / Alert

3

Certificate / -

 * / Alert

4

CertificateVerify / -

 * / Alert 5

Finished
 / Finished+AppData

AppData / EOF * / Alert

— Results from the GASP project

O. Levillain Protocol Implementation (In)security 15/30

State Machines Gone Crazy

Highlighting CVE 2020-24613 on wolfSSL

0

 - / ClientHello

F

 * / Alert

1

ServerHello / -

 * / Alert

2

EncryptedExtensions / -

 * / Alert

3

Certificate / -

 * / Alert

4

CertificateVerify / -

5

Finished
 / Finished+AppData

 * / Alert

Finished
 / Finished+AppData

AppData / EOF * / Alert

O. Levillain Protocol Implementation (In)security 16/30

State Machines Gone Crazy

Highlighting CVE 2020-24613 on wolfSSL

0

 - / ClientHello

F

 * / Alert

1

ServerHello / -

 * / Alert

2

EncryptedExtensions / -

 * / Alert

3

Certificate / -

 * / Alert

4

CertificateVerify / -

5

Finished
 / Finished+AppData

 * / Alert

Finished
 / Finished+AppData

AppData / EOF * / Alert

O. Levillain Protocol Implementation (In)security 16/30

State Machines Gone Crazy

State Machine Inference

It is possible to infer the state machines from a stack in a black-box
approach
I L? algorithm (Angluin, 1987)
I Adaptation to Mealy machines used in many contexts
I State machine inference for various protocols (ex.: TLS, H2)
I (Other approaches exist, e.g. by mutating a reference transcript)

Application to secure communication protocols
I Systematic research of authentication shortcuts
I Highlight loops in the state machine
I Exploit differences between state machines for fingerprinting purposes

O. Levillain Protocol Implementation (In)security 17/30

State Machines Gone Crazy

State Machine Inference

It is possible to infer the state machines from a stack in a black-box
approach
I L? algorithm (Angluin, 1987)
I Adaptation to Mealy machines used in many contexts
I State machine inference for various protocols (ex.: TLS, H2)
I (Other approaches exist, e.g. by mutating a reference transcript)

Application to secure communication protocols
I Systematic research of authentication shortcuts
I Highlight loops in the state machine
I Exploit differences between state machines for fingerprinting purposes

O. Levillain Protocol Implementation (In)security 17/30

State Machines Gone Crazy

Our Methodology

Client Container Inference Tool

Trigger Script

1 2

6

Learner
(L* engine)

Reset3

SUT
(TLS Client)

Mapper
(TLS Server)

Listening Endpoint

Network Communications

TLS Connection Initiation
(Client Hello)

Processus Creation

4

5

Concrete Messages
7

8

9

Inferred state machine

10

Result Production

Abstract Messages

I > 400 versions of client and server open source implementations
I OpenSSL, GnuTLS, wolfssl, NSS...

O. Levillain Protocol Implementation (In)security 18/30

State Machines Gone Crazy

Results on TLS Stacks: Authentication Bypasses

0

 - / ClientHello

F

 * / Alert

1

ServerHello / -

 * / Alert

2

EncryptedExtensions / -

 * / Alert

3

Certificate / -

 * / Alert

4

CertificateVerify / -

5

Finished
 / Finished+AppData

 * / Alert

Finished
 / Finished+AppData

AppData / EOF * / Alert

I EarlyCCS (CVE-2014-0224) and FREAK (2015-0204) on OpenSSL
detected

I CVE-2020-24613 reproduced on wolfSSL
I Three new CVEs on wolfSSL TLS 1.3 client and server

O. Levillain Protocol Implementation (In)security 19/30

State Machines Gone Crazy

Results on TLS Stacks: Unexpected Loops

Stack Scenario Messages Max. Time
Between Msgs

erlang 24 1.0/1.2 Server NoRenegotiation Alert
> 1 hour?or ApplicationData

fizz 22.01.24 1.3 Client ChangeCipherSpec > 1 hour
matrixssl 4.0 - 4.3 1.0/1.2 Server NoRenegotiation Alert ≈ 40 seconds
NSS 3.15 - 3.78 1.0/1.2 Server NoRenegotiation Alert > 1 hour
OpenSSL < 1.1.0 1.0/1.2 Server Empty ApplicationData > 1 hour

O. Levillain Protocol Implementation (In)security 20/30

State Machines Gone Crazy

Result on TLS Stacks: Fingerprinting (1/2)

For a given scenario (role, TLS version, option)
I Different stacks always produce different state machines
I Consecutive versions of the same stack can share a state machine
I Extracting distinguishing sequences leads to a fingerprinting tool
I Complementary to other fingerprinting approaches

TLS 1.3 servers can be put in 13 classes using 8 sequences

CloseNotify ClientHello Certificate
ClientHello Certificate ClientHello Finished CloseNotify
ClientHello ClientHello ClientHello EmptyCertificate CertificateVerify
ClientHello CloseNotify ClientHello EmptyCertificate InvalidCertificateVerify

O. Levillain Protocol Implementation (In)security 21/30

State Machines Gone Crazy

Result on TLS Stacks: Fingerprinting (1/2)

For a given scenario (role, TLS version, option)
I Different stacks always produce different state machines
I Consecutive versions of the same stack can share a state machine
I Extracting distinguishing sequences leads to a fingerprinting tool
I Complementary to other fingerprinting approaches

TLS 1.3 servers can be put in 13 classes using 8 sequences

CloseNotify ClientHello Certificate
ClientHello Certificate ClientHello Finished CloseNotify
ClientHello ClientHello ClientHello EmptyCertificate CertificateVerify
ClientHello CloseNotify ClientHello EmptyCertificate InvalidCertificateVerify

O. Levillain Protocol Implementation (In)security 21/30

State Machines Gone Crazy

Result on TLS Stacks: Fingerprinting (2/2)
Stack Versions N
erlang 24.0.3 - 24.2.1 9
GnuTLS 3.6.16 - 3.7.2 4

matrixssl 4.0.0 - 4.1.0 4
4.2.1 - 4.3.0 6

NSS 3.39 - 3.40 4
3.41 - 3.78 4

OpenSSL 1.1.1a - 1.1.1n 4
3.0.0 - 3.0.2 4

wolfSSL

3.15.5 - 4.0.0 7
4.1.0 - 4.6.0 7
4.7.0 - 4.8.1 7
5.0.0 - 5.1.1 7

5.2.0 6

O. Levillain Protocol Implementation (In)security 22/30

State Machines Gone Crazy

Work in Progress on SSH and OPC-UA

SSH
I A 3-stage Protocol: Transport, Authentication, Connection (overall, 30

messages)
I Natural Loops (renegotiation)
I Connection messages are complex to handle (multiple channels)
I OpenSSH, libssh, asyncssh, dropbear, wolfssh

OPC-UA
I Industrial Control Systems / SCADA
I A rather sketchy specification
I Various implementations in .Net, C, Python, Rust

O. Levillain Protocol Implementation (In)security 23/30

State Machines Gone Crazy

Challenges: Counting Parentheses

OpenSSH state machine can not be represented as a Mealy machine
I After the client authentication,

I we can initiate a renegotiation (KEXINIT)...
I ask for n new channels (CHANNEL_OPEN)...
I and complete the renegotiation (DH_INIT)
I which leads to the following answers after the last message: DH_REPLY,

NEWKEYS and n times OPEN_CONFIRM

A solution to produce an approximate state machine
I Group the OPEN_CONFIRM answers as a fake OPEN_CONFIRM+ message

O. Levillain Protocol Implementation (In)security 24/30

State Machines Gone Crazy

Challenges: Counting Parentheses

OpenSSH state machine can not be represented as a Mealy machine
I After the client authentication,
I we can initiate a renegotiation (KEXINIT)...

I ask for n new channels (CHANNEL_OPEN)...
I and complete the renegotiation (DH_INIT)
I which leads to the following answers after the last message: DH_REPLY,

NEWKEYS and n times OPEN_CONFIRM

A solution to produce an approximate state machine
I Group the OPEN_CONFIRM answers as a fake OPEN_CONFIRM+ message

O. Levillain Protocol Implementation (In)security 24/30

State Machines Gone Crazy

Challenges: Counting Parentheses

OpenSSH state machine can not be represented as a Mealy machine
I After the client authentication,
I we can initiate a renegotiation (KEXINIT)...
I ask for n new channels (CHANNEL_OPEN)...

I and complete the renegotiation (DH_INIT)
I which leads to the following answers after the last message: DH_REPLY,

NEWKEYS and n times OPEN_CONFIRM

A solution to produce an approximate state machine
I Group the OPEN_CONFIRM answers as a fake OPEN_CONFIRM+ message

O. Levillain Protocol Implementation (In)security 24/30

State Machines Gone Crazy

Challenges: Counting Parentheses

OpenSSH state machine can not be represented as a Mealy machine
I After the client authentication,
I we can initiate a renegotiation (KEXINIT)...
I ask for n new channels (CHANNEL_OPEN)...
I and complete the renegotiation (DH_INIT)

I which leads to the following answers after the last message: DH_REPLY,
NEWKEYS and n times OPEN_CONFIRM

A solution to produce an approximate state machine
I Group the OPEN_CONFIRM answers as a fake OPEN_CONFIRM+ message

O. Levillain Protocol Implementation (In)security 24/30

State Machines Gone Crazy

Challenges: Counting Parentheses

OpenSSH state machine can not be represented as a Mealy machine
I After the client authentication,
I we can initiate a renegotiation (KEXINIT)...
I ask for n new channels (CHANNEL_OPEN)...
I and complete the renegotiation (DH_INIT)
I which leads to the following answers after the last message: DH_REPLY,

NEWKEYS and n times OPEN_CONFIRM

A solution to produce an approximate state machine
I Group the OPEN_CONFIRM answers as a fake OPEN_CONFIRM+ message

O. Levillain Protocol Implementation (In)security 24/30

State Machines Gone Crazy

Challenges: Counting Parentheses

OpenSSH state machine can not be represented as a Mealy machine
I After the client authentication,
I we can initiate a renegotiation (KEXINIT)...
I ask for n new channels (CHANNEL_OPEN)...
I and complete the renegotiation (DH_INIT)
I which leads to the following answers after the last message: DH_REPLY,

NEWKEYS and n times OPEN_CONFIRM

A solution to produce an approximate state machine
I Group the OPEN_CONFIRM answers as a fake OPEN_CONFIRM+ message

O. Levillain Protocol Implementation (In)security 24/30

State Machines Gone Crazy

Challenges: Exploding State Machines

Inferring asyncssh state machine (Transport + Authentication layers)
I 5 + 5 messages in the vocabulary
I 360 states
I Problem with stacked Auth messages in the middle of a negotiation

O. Levillain Protocol Implementation (In)security 25/30

State Machines Gone Crazy

Efficiency

Main efficiency problem with L?

I We keep waiting for the target responses
I A short timeout may lead to invalid or non-deterministic behavior
I The optimal timeout depends on the studied stack

Optimizations
I EOF is final (no need to explore sequences beyond an EOF
I Since L? relies on a deterministic behavior, exploit the known responses
I Drastic improvement (25 times faster for a typical TLS inference)
I (Preliminary work to monitor the time wasted waiting for timeouts)

O. Levillain Protocol Implementation (In)security 26/30

State Machines Gone Crazy

Efficiency

Main efficiency problem with L?

I We keep waiting for the target responses
I A short timeout may lead to invalid or non-deterministic behavior
I The optimal timeout depends on the studied stack

Optimizations
I EOF is final (no need to explore sequences beyond an EOF
I Since L? relies on a deterministic behavior, exploit the known responses
I Drastic improvement (25 times faster for a typical TLS inference)
I (Preliminary work to monitor the time wasted waiting for timeouts)

O. Levillain Protocol Implementation (In)security 26/30

State Machines Gone Crazy

Discussions About State Machines

There is still room for improvement for most implementations
I Authentication bypasses
I Deviations from the standard
I Possible Denial of Service situations

L? is a powerful tool
I Our approach aims at reproducibility and automation
I Work is still needed to improve the performance and tackle corner cases

More information in [ESORICS22]

O. Levillain Protocol Implementation (In)security 27/30

Conclusion

Conclusion

Conclusion

Parsing messages for real-world protocols is hard
I Do not disregard the difficulty
I Encourage simple (and properly formalized) formats
I Stress test implementations

State machines for real-world protocols are complex
I Fix ambiguous and incomplete specifications
I Discuss implementation choices leading to fingerprinting possibilities
I Send feedback to stack developers about deviations

O. Levillain Protocol Implementation (In)security 29/30

Conclusion

Conclusion

Parsing messages for real-world protocols is hard
I Do not disregard the difficulty
I Encourage simple (and properly formalized) formats
I Stress test implementations

State machines for real-world protocols are complex
I Fix ambiguous and incomplete specifications
I Discuss implementation choices leading to fingerprinting possibilities
I Send feedback to stack developers about deviations

O. Levillain Protocol Implementation (In)security 29/30

Questions ?

Thank you for your attention

References
[LangSec16] Caradoc: a pragmatic approach to PDF parsing and validation. G. Endignoux, OL and J.-Y. Migeon.
LangSec Workshop @ IEEE SSP 2016
[PhD16] A study of the TLS ecosystem. OL. PhD defended in 2016
[WISTP19] Analysis of QUIC Session Establishment and its Implementations. E. Gagliardi and OL
[CRiSIS20] Implementations Flaws in TLS Stacks.... OL
[RESSI20] Le projet GASP: a Generic Approach to Secure network Protocols. OL
[ESORICS22] Towards a Systematic and Automatic Use of State Machine Inference to Uncover Security Flaws and
Fingerprint TLS Stacks. AT Rasoamanana, OL and H. Debar

Articles and resources available on https://paperstreet.picty.org and https://gasp.ebfe.fr

https://paperstreet.picty.org
https://gasp.ebfe.fr

	Parsing Network Messages
	State Machines Gone Crazy
	Conclusion
	Questions

