
Newspeak, Doubleplussimple Minilang for
Goodthinkful Static Analysis of C

EADS IW/SE Technical Note 2008-IW-SE-00010-1

Charles Hymans1 and Olivier Levillain2 ?

1 EADS Innovation Works IW/SE/CS, 12, rue Pasteur - 92152 Suresnes - France,
charles.hymans@eads.net

2 Direction Centrale de la Sécurité des Systèmes d’Information SGDN/DCSSI/SDS,
51, bld la Tour Maubourg - 75007 Paris - France, olivier.levillain@sgdn.gouv.fr

Abstract. Static analysis is a difficult task, partly because program-
ming languages are extremely rich, and have intricate semantics with
architecture-dependent aspects. We have therefore chosen to design New-
speak, a kernel language dedicated to the purpose of static analysis. And,
we have implemented a front-end, C2Newspeak, that translates C pro-
grams into Newspeak. Thus, any static analysis algorithm that uses this
front-end, is preserved from the aforementioned sources of complexity.
This paper fully presents the syntax and precise semantics of Newspeak.
The design rationale of the language is explained and the advantages for
static analysis highlighted. The various details of the translation from C
to Newspeak are shown on examples. C2Newspeak was made to compile
embedded C programs of a few million lines of code. It is, as well as a
few other utilities, provided as free software under the LGPL.

1 Introduction

Following a trend found in most other industries, increasingly more functionali-
ties on aeronautical products are implemented in software. As a result, software
grows both in size and complexity, making the task of verification harder. At
EADS, we build static analysis tools to automatically ensure programs have
their expected behavior. We focus particularly on C, which is one of the most
common programming language found on embedded software.

The C programming language’s syntax and semantics are extremely complex.
Many constructions are redundant, some semantics information may be missing,
or depend on the code context, the compiler or the hardware. It is therefore not
well-advised to perform static analysis directly on the syntax tree of a C program.
This approach produces a tangled, unnecessarily large, hard to maintain, and
laden with corner bugs implementation. Thus annihilating any trust one could
put in the results of the tool.

So we decided to create an intermediate language, more practical than C for
static analysis uses. The goal was to obtain a language that would be:

? This work was realized during an internship at EADS Innovation Works.

2 2008-IW-SE-00010-1

– precise: its semantics is precisely defined,
– simple: primitives are as few, as classical and as concise as possible,
– minimal: no language primitive or fragment of a primitive should be express-

ible as a combination of other primitives,
– explicit: primitives are context-free, i.e. all semantic information needed to

execute any primitive are readily available,
– analysis-oriented: the language primitives have annotations useless to the

execution but necessary for a static analysis to perform correctness checks,
– architecture-independent: all architecture dependent features (essentially the

size of types and the offsets of structure fields) are already computed and
made explicit during the translation to Newspeak,

– expressive: it should be possible to translate all C in Newspeak.

This language is called Newspeak in reference to George Orwell’s novel “1984”:

In the end the whole notion of goodness and badness will be covered by
only six words – in reality, only one word. Don’t you see the beauty of
that, Winston?

The compilation from C to Newspeak is implemented as a front-end called
C2newspeak. This translation is faithful to the semantics of C as described in
the ANSI standard [7]. It is parameterized by various architecture and compiler
(integer widths, padding...) specifics. C2newspeak was made to scale up to a few
million lines of code. It is distributed with other utilities under the LGPL at
http://www.penjili.org/newspeak.html.

The syntax and semantics of Newspeak are presented in section 2. The compi-
lation is explained through examples in section 3. Implementation, experiments
and some other Newspeak utilities are all discussed in section 4. We compare
other intermediate languages in section 5 on related work. At last, possible fur-
ther extensions are listed before concluding in section 6.

2 Syntax and Semantics

2.1 Newspeak essential paradigms

In order to concisely expose the essential paradigms of Newspeak, let us start
with the succinct subset of figure 1.

For now, the only type of data is integer. Note how commands are tagged
with control points (c). Every function’s body has also a final control point that
signals the end of the function. These tags let us track the progress of program
execution and are necessary to formally define the semantics of Newspeak.

Variable stack and store The memory is modeled with a stack and a store.
The store is composed of a collection of disjoint memory blocks. Each block

is a sequence of consecutive bytes (in Byte) identified by a location ` (in Loc).
The address (in Addr) of the oth byte in block ` is thus denoted (`, o). Within a
block, address arithmetic is possible (`, o + 1) and (`, o − 1), being respectively
the address following, and preceding (`, o). However, two addresses from distinct

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

3 2008-IW-SE-00010-1

types
τ ::= β scalar type
β ::= intε

n integer

left values
lv ::= x− local variable

constants
k ::= i integer

fn ::= fi function name

operators
op ::= coerceI integer coercion

| +,−,×, /, % integer arithmetic

expressions
e ::= k constant

| lvβ left value
| op(e) unary operation
| op(e1, e2) binary operation

commands
cmd ::= clv =β e scalar assignment

| c{τ ; cmdc′} variable declaration
| cfn() function call
| cmd1 . . . cmdn sequence

program
prg ::= (f1 = cmd1

c1 , . . . , fn = cmdn
cn)

Fig. 1. Syntax of a subset of Newspeak

Addr ⊆ Loc × [0; N [σ ∈ Addr → Byte

σn(`, o) = σ(`, o) . . . σ(`, o + n − 1)

σ[(`, o)
n
7→ b0 . . . bn−1](a) =

{

bi if a = (`, o + i)

σ(a) otherwise

Fig. 2. Store domain and accesses

blocks are incomparable. A sequence b of n bytes may be written to or read

from the store at address a. To that end, we have the usual notations σ[a
n
7→ b]

and σn(a), formally defined in figure 2. When clear from context, the number of
bytes n will be omitted.

In order to interpret a variable, it is necessary to know which memory block
stores its value. The variable stack ρ provides this link. It maps an integer (the
position of the variable in the stack) to a location in the store.

Data Programs manipulate scalar values, i.e. integers. Integer types have a sign
parameter ε, to specify whether the type is signed (s) or unsigned (u), and a
size n which represents the number of bytes needed for their binary encoding.
All scalar types are assimilated to the set of values they represent, hence:

ints
n = [−28n−1; 28n−1[intu

n = [0; 28n[

A scalar value is stored in σ as a sequence of bytes. Hence, any scalar value can be
encoded in bytes. Conversely, a sequence of bytes can (sometimes) be interpreted
as a value. To that end, let us define a total function tobytesβ and a partial

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

4 2008-IW-SE-00010-1

function ofbytesβ. It is unnecessary to precisely define these functions. Their
behavior is, as a matter of fact, architecture-dependent, because, for example, of
big or little endian byte ordering. These encoding and decoding functions should
still obey a few equational rules, such as:

ofbytesβ(tobytesβ(v)) = v (1)

The number of bytes used to encode a value of type τ is called the size of the
type, and will be noted |τ |. As for now, only |intε

n| = n is defined.
Our memory and data model is very similar in essence to the one found in

[2] or [14]. However, in our case, the byte encoding of values, rather than the
crude values themselves are stored in memory. This makes the model both lower
level and simpler.

Left values and expressions In a stack ρ and a store σ, a left value lv and an
expression e respectively evaluate to an address a and a value v. This is given
by the two judgments ρ, σ ` lv : a and ρ, σ ` e : v inductively defined on the
syntax.

The location of the memory block for a local variable x−, is found at offset
x from the top of the stack ρ. Assuming the height of the stack is n, it is thus
equal to ρ(n− x). Then the address of variable x is the address of the first byte
in this block, hence:

n = |ρ| ` = ρ(n − x)

ρ, σ ` x− : (`, 0)

A constant value immediately evaluates to itself. To read the value of type β
found in memory at a given address a, the sequence of |β| bytes is first retrieved
and then converted, if possible, with function ofbytesβ :

ρ, σ ` k : k

ρ, σ ` lv : a n = |β| v = σn(a) v ∈ dom(ofbytesβ)

ρ, σ ` lvβ : ofbytesβ(v)

To evaluate an operator-based expression, the subexpression(s) is (are) first re-
cursively evaluated then the operator applied (see appendix C for a formal defi-
nition). Since Newspeak expressions have no side-effects whatsoever, the order of
evaluation does not matter. Since we did not introduce function pointers yet (see
section 2.3), the semantics of a function name is straightforward: it evaluates to
itself.

ρ, σ ` fi : fi

Operators Arithmetic operators +, −, ×, / and % are all standard natural
number operations. For division, when the divisor is 0, it is an error that blocks
the semantics. Similarly, for the congruence operator, i%0 does not give any
result. The formal definitions of these operators is systematic and can be found
in appendix C.

Note that, unlike C arithmetic, these Newspeak operators are defined how-
ever large their results may be. In C, on most architectures, all integer arithmetic

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

5 2008-IW-SE-00010-1

is performed modulo. On some architectures, however, the behavior is less or-
thodox. In any case, Newspeak has an additional operator to mimic overflows:
coerceI . If its argument is not within the range I, then an arbitrary number in
I is returned, otherwise this operation is silent. As a benefit, coerceI can also
be used to model casts between integers of different size and/or sign. Section 3.3
explains the translation of C arithmetics and casts using coercion.

i ∈ I
coerceI(i) : i

i 6∈ I i′ ∈ I

coerceI(i) : i′

State An interpreter that runs Newspeak code is formally defined by a rela-
tion → in the style of operational semantics [16]. The notation s1 → s2 de-
scribes the fact that the interpreter may perform an elementary execution step
from state s1 to state s2. A state s of the interpreter is a tuple (c, ρ, σ, D, S). In
addition to the stack ρ and store σ, the state has three other components:

– A control point c tracks the current position of the interpreter relative to
the program code,

– A location dump D collects all the locations ever created since the begin-
ning of execution. It allows to generate a fresh location, distinct from any
other whenever a new memory block is created,

– At last, a return stack S piles the control points of the instruction to return
to once a function call ends.

This program state is very close to the one described in [17], except that the
location dump is encoded in the state (thanks to counters). It would thus be
easy to add dynamic allocation as a core primitive to Newspeak while keeping
the same semantic state.

Commands We note ccmdc′ the fact that control point c labels the first in-
struction of the command cmd and that c′ is the next control point according
to the control flow graph of the program. The formal definition of this notation
is straightforward, yet painstaking. For sake of completeness, it is recalled in
appendix B.

The operational semantics is then given by a few inference rules. When the
interpreter reaches an assignment, it first evaluates the left value as an address
a. It then proceeds to evaluate the right value. The bytes that represent this
value, seen as having type β, are then written in the store starting at address a:

clv =β ec′ ρ, σ ` lv : a ρ, σ ` e : v

(c, ρ, σ, D, S) → (c′, ρ, σ[a 7→ tobytesβ(v)], D, S)

At local variable declaration, a fresh store location ` is created and pushed on top
of the stack ρ. Simultaneously, a new block of memory is allocated in the store
at ` and initialized with random bytes. When execution reaches the end of the
valid scope of the variable, the top of the stack is popped and the corresponding

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

6 2008-IW-SE-00010-1

memory block freed.

c{τ ; c′cmd} n = |ρ| + 1 ` 6∈ D v ∈ Byte|τ |

(c, ρ, σ, D, S) → (c′, ρ[n 7→ `], σ[(`, 0) 7→ v], D ∪ {l}, S)

{τ ; cmdc}c′ n = |ρ| − 1 ρ′ = ρ|[1;n] σ′ = σ|{(`,o)|` 6=ρ(n+1)}

(c, ρ, σ, D, S) → (c′, ρ′, σ′, D, S)

At function call, the interpreter evaluates the function name and redirects exe-
cution to the first control point of the function. It also pushes the control point
of the command that follows the call on top of the return stack. So that, when
execution of the function ends, execution may continue:

cfn()c′ ρ, σ ` fn : fi fi = cicmd i

(c, ρ, σ, D, S) → (ci, ρ, σ, D, S.c′)

fi = cmd i
c

(c, ρ, σ, D, S.c′) → (c′, ρ, σ, D, S)

Similarly to an assembly language, Newspeak function call has no arguments.
As shown in 3.4 in the translation of C function calls, it is up to the caller to
push them on the stack and up to the callee to read them at the right position
in the stack according to calling conventions.

Note that there are no rules for the sequence of commands, as they are
implicitly given by the control flow graph.

2.2 Composite data structures

There are two composite data structures: arrays and regions.

τ ::= . . . | τ [n] | {τ1 o1; . . . ; τk ok}n

An array τ [n] is a sequence of n consecutive elements of type τ . A region
{τ1 o1; . . . ; τk ok}n is a block of n consecutive bytes. A region indicates which
kind of data may be expected at offsets o1 to ok from the start of the block.
Naturally, all values must be contained within the region, so we always have:

∀i : 0 ≤ oi ≤ n − |τi|

In order to access a specific element of an array, or field of a region, the address
of the block is first computed, and then incremented by some offset. Newspeak’s
shift construction + serves this exact purpose:

lv ::= . . . | lv + e
ρ, σ ` lv : (`, o) ρ, σ ` e : i

ρ, σ ` lv + e : (`, o + i)

Newspeak provides the operator belongsI that blocks the execution when its
argument does not belong to the range I:

op ::= . . . | belongsI
i ∈ I

belongsI(i) : i

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

7 2008-IW-SE-00010-1

This operator is especially useful to explicit array bounds checks, and will be
illustrated in the first example of section 3.5.

The region copy allows to copy a whole block of memory from some address
to another address:

cmd ::= . . . | clv1 =n lv2

clv1 =n lv2
c′ ρ, σ ` lv1 : a1 ρ, σ ` lv2 : a2

(c, ρ, σ, D, S) → (c′, ρ, σ[a1 7→ σn(a2)], D, S)

Region copy is less powerful than the C standard library function memcpy(),
since the number n of bytes to copy is statically determined. In practice, and
as seen in section 3.4, this command is used to encode C structure or union
assignment.

2.3 Pointers

Newspeak has only two kinds of pointers: pointers on data and pointers on
function. The size of pointers (|ptr| and |fptr|) is left as a parameter, since it
may vary according to the architecture.

β ::= . . . | ptr | fptr

Newspeak pointer types do not carry any information about the kind of
value they reference. Indeed, in C, it is valid to cast any kind of data pointer to
another data pointer. This is particularly true of casts from and to the char*

or void* types. Casts between pointers are useful to implement a weak form of
polymorphism (such as in the memcpy() function). However, this permissivity
makes the indication on pointer types unreliable: a static analysis cannot rely
on the C type information to infer the kind of data that may be accessed from a
given pointer. As a matter of fact, in C, any sequence of bytes may be interpreted
as any kind of data that fits. As a side-effect, casts between pointers are absent
from Newspeak.

Newspeak has syntax to perform pointer creation, dereference and arithmetic:

lv = . . . | [e]k fn = . . . | [e]τ1...τk→τ

e = . . . | nil | &nlv | &τ1...τk→τf op = . . . | +p | −p

A data pointer is either null (nil) or a tuple 〈(`, o), [o1; o2]〉, in which case it
refers to the address (`, o). This pointer is valid as long as it stays, or accesses,
data within the memory zone that stretches from (`, o1) to (`, o2).

ptr = {nil} ∪ {〈(`, o), [o1, o2]〉 | (`, o) ∈ Addr ∧ 0 ≤ o1 ≤ o ≤ o2 ≤ N}

Hence, such a pointer may be created from a left value lv and a size n. Then,
pointer arithmetic may shift the address (l, o). Yet, program execution stops with
a pointer out of bounds whenever o leaves the memory zone delimited by o1 and
o2. At last, a pointer may be dereferenced to access k bytes of data. However, it
is an error if either the block referred to by the pointer has been deallocated (` is

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

8 2008-IW-SE-00010-1

not in the domain of the store anymore), or the valid zone of the pointer can not
hold all k bytes (o + k > o2). Whenever two pointers refer to different addresses
within the same memory block, the distance between them can be computed.
Pointer arithmetic and dereference is invalid on the null pointer. Formally:

ρ, σ ` lv : (l, o)

ρ, σ ` &nlv : 〈(l, o), [o; o + n]〉

o′ = o + i o1 ≤ o′ ≤ o2

〈(l, o), [o1; o2]〉 +p i : 〈(l, o′), [o1; o2]〉

ρ, σ ` e : 〈(l, o), [o1; o2]〉 ` ∈ dom(σ) o + k ≤ o2

ρ, σ ` [e]k : (l, o)

〈(l, o1), r1〉 −p 〈(l, o2), r2〉 : o1 − o2

A function pointer is either null or created from a function name. Formally, we
have fptr = {nil} ∪ {f1, . . . , fn}. When dereferenced, the function’s type and
expected type at call site are checked for equality:

ρ, σ ` &f : f

ρ, σ ` e : f f : τ1 . . . τk → τ

ρ, σ ` [e]τ1...τk→τ : f

2.4 Type conversions

We have seen in 2.1 how coercion stands for the cast between various kinds of
integers, and mentioned in 2.3 that casts between pointer types are transparent.
Any other cast amounts to the conversion of the value v into a sequence of bytes
and then back to a value of the target type β2. Note that this behavior is the
same as if the value were first written to the store to be later read as a value of
type β2.

op = . . . | (β1 � β2)
v′ = tobytesβ1

(v) v′ ∈ dom(ofbytesβ2
)

(β1 � β2)(v) : ofbytesβ2
(v′)

In C, the integer 0 is always interpreted as the null pointer. This puts an addi-
tional constraint on the encoding/decoding functions:

tobytesintε
n
(0) = tobytesptr(nil) when n = |ptr|

tobytesintε
n
(0) = tobytesfptr(nil) when n = |fptr|

Note, that together with (1), and the semantics of casts, this rule immediately
implies that (ptr � intε

n)(nil) yields 0. As a sidenote, let us mention that not
every sequence of bytes encodes a valid pointer. Indeed, if a program has no
pointer declaration, there isn’t any sequence of bytes that represents a pointer!
That is why, in general, function ofbytesptr is partially defined.

2.5 Control commands

Selection So as to offer choices between different branches of executions, New-
speak includes à la Dijsktra guarded alternative [5]:

cmd ::= . . . | cΣ0<i≤n (bi) → cmd i b ::= e1 . . . ek

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

9 2008-IW-SE-00010-1

The interpreter executes one of the commands associated to one of the guards
that holds in the current state of memory. A guard b = e1 . . . ek holds if none of
its expressions evaluates to 0:

cΣ0<i≤n (bi) →
cicmd i ρ, σ ` bj

(c, ρ, σ, D, S) → (cj , ρ, σ, D, S)

ρ, σ ` e1 : v1 . . . ρ, σ ` ek : vk ∀i : vi 6= 0

ρ, σ ` e1 . . . ek

Newspeak guards explicitly provides conjunction; disjunction may be encoded
with various alternatives. With the negation, equality and inequality operators,
all kinds of boolean formulas may be expressed in Newspeak. Both equality and
inequality carry the kind of scalar value they compare. Data pointers are com-
pared by their offsets, only when they refer to the same memory block. Inequal-
ity is not defined for function pointers. Except for pointer inequality, the other
boolean operators have standard semantics that need no further explanation:

op ::= ¬ | ≥β | ==β

o1 ≥ o2

(`, o1) ≥ptr (`, o2) : 1

o1 < o2

(`, o1) ≥ptr (`, o2) : 0

Loop and structured forward gotos Newspeak has only one kind of loop,
the infinite loop, that runs forever (see appendix C for its formal semantics).
There needs to exist some way to break out of an infinite loop. This is the role
of structured forward gotos. Indeed, do cmd with lbl : construct let us name a
block cmd with a label lbl . It then becomes possible to jump from any place
inside this block directly to the end label lbl :

cmd ::= | cforever cmd | do cmd with lbl : | cgoto lbl

cgoto lbl do cmd with lbl :c
′

(c, ρ, σ, D, S) → (c′, ρ, σ, D, S)

It is assumed that a goto and its target label are within the same variable
scope. Otherwise some variables may never be popped from the local stack and
subsequent variables accesses would be erroneous. Moreover, all labels defined
in a program are distinct. Note also that do cmd with lbl : has no control point
of its own: this instruction is really nothing more than an annotation.

These constructions can encode C loop exit, break, continue and even multi-
ple returns in a function, see section 3.4 for an example of translation. However
backward or intertwined gotos (goto l1; goto l2; l1: ... l2:) are not triv-
ially representable in Newspeak. The choice of control structures was motivated
by the necessity to keep a static analysis algorithm both simple and efficient.
Forward gotos may be handled with a forward pass using a table to join all
information related to a given label. And infinite loops clearly isolate fixpoint
computations.

As a last remark, forward gotos and do with commands are syntactically
very similar to exception raise and catch. They may easily be extended in the

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

10 2008-IW-SE-00010-1

future, if other languages than C (for instance Ada [8]) need to be compiled into
Newspeak.

2.6 Globals, initial state

A Newspeak program consists in a list of globals with their initializations, and
a list of functions with their bodies, one of them being the main function.

prg ::= (τ1 g1 = init1, . . . , τk gk = initk; f1 = cmd1
c1 , . . . , fn = cmdn

cn)

init ::= zero | {o1 =β1 e1; . . . ok =βk
ek}

At startup, the initial store σ0 contains a memory block for each global variable.
As defined in appendix C, these blocks are, by default, filled with 0. However,
they can also be explicitly initialized with static expressions. A global will be
directly accessed by its name:

lv ::= . . . | g
(ρ, σ) ` g : (g, 0)

Execution starts at the first control point c0 of the main function in a state
(c0, ε, σ0, {g1 . . . gk}, ε), where both local variable and return stack are empty.

This ends our exposition of the formal semantics of Newspeak. The only
aspects of the language we didn’t address are bitwise operators (boolean and
shift), and floating point operations. Bitwise operators are fairly straightforward.
On the contrary, floating points operations are complex and necessitate to study
other standards such as [10]. Newspeak may still evolve in this regard.

3 Translation from C to Newspeak

The compilation from C to Newspeak preserves the semantics of the source
programs, as we understood it from the informal definition made by the ANSI
C standard [7]. In particular, we often compared C2newspeak output to the
behavior of the corresponding C file compiled.

3.1 Type translation

The main problem concerning types is that they depend on the architecture.
The user can describe its architecture by way of some parameters. In all our
example, we will assume the architecture to be i386.

Sizes of integer types are explicited by the translation. Declarations such as
int and unsigned char would be translated into ints

4 and intu
1 .

Pointer types are even simpler, because we immedi-
ately forget the type of data they are supposed to point

int* ; ptr
char** ; ptr
int (*)(int) ; fptr

to. The only distinction made is between data and function pointers.

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

11 2008-IW-SE-00010-1

The offset (in number of bytes) of field f
in struct T is computed by an architecture-
dependent function, offsetofT(f) during transla-
tion. The computation of this offset may depend
on the underlying architecture and on the align-

struct {

;

{
char* x; ptr 0
char y; ints

1 4
int z; } s; ints

4 8 }12

union {
;

{
int i; ints

4 0
char c; } u; ints

1 0 }4

ment/packing policy employed. We see that C structures and unions are both
translated into Newspeak regions, the difference being that union fields are all
at offset 0.

Finally, an array short[20] will be translated into the Newspeak type ints
2[20].

3.2 Variables

Here is a simple program that declares a
global variable x. It then adds two local vari-
ables and performs some assignments which
shows how local variables are pushed on a
stack. To lighten the representation of the

int x;
void main() {

;

main() {
int y; {ints

4
int z; {ints

4

x = y; x =ints
4

1−

ints
4

x = z; } x =ints
4

0−

ints
4
}}}

scopes, we will assume all the variables used from now on are global ones.

3.3 Left values and expressions

Additions, as well as other arith-
metic operations, have to be trans-

int x,y,z;
; x =ints

4
coerce[m,M[(yints

4
+ zints

4
)

x = y + z;

lated as the composition of two Newspeak operations: the addition of natural
integers, followed by the explicit integer coercion into the appropriate type.
([m, M [stands for the domain of int

s
4: [−231, 231[).

Here is a cast from a 4-byte integer into
a 1-byte integer. The translation provided by

int x; unsigned char y;

y = x; ; y =intu
1

coerce[0,28[(xints
4
)

C2newspeak and the behavior of the coerce operator (seen in section 2.1) ensures
the soundness with respect to the C standard: if x is out of the 1-byte integer’s
scope, y will take a random value in its domain.

3.4 Statements

C assignment can be translated by two dif-
ferent Newspeak primitives: the scalar assign-
ment and the region copy. The example with

struct {int x; int y} a,b;

a.x = b.y; ; a + 0 =ints
4

(b + 4)ints
4

a = b; ; a =8 b

a and b, two variables of type struct {int x; int y} shows this distinction. We
may notice that the shift (+) construction used here would also translate array
elements access, as shown in the first example of section 3.5.

A while loop becomes an infinite
loop wrapped into a do . . . with lbl :
block. In the loop, the condition is
then checked with a guarded alterna-
tive at the beginning of each iteration,

;

x =β 0;
do { forever {

x = 0; | (x ≤β 10) → goto lbl
while (x < 10) | (¬x ≤β 10) → ∅

x++; x =β coerce[m,M[(xβ + 1)
}} with lbl:

using a forward goto to lbl to explicitly break the control flow. We have here an
application of the design rule of minimality: a C instruction is split into many
Newspeak primitives, which can be reused to translate other statements (for

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

12 2008-IW-SE-00010-1

loops, if and switch choices). (β stands for int
s
4, and [m, M [for [−231, 231[).

Newspeak functions use the same
conventions as in assembler: it is the

char f (char x)
;

f = {1− =ints
1

{return (x+1);} coerce[−27,27[(0
−

β
+ 1); }

duty of the caller to prepare the variable stack. In our example, f expects 0− to
be the argument x and 1− to be a variable ready to receive its result.

When the function is called, the return value is
first declared, then the argument is declared and
initialized; thus, the top of the variable stack is
ready for f . It is another example of the minimal-

f (5); ;

ints
1; (value of f)

ints
1; (x)

0−

ints
1

=ints
1

5;

f();

ity rule, because we reuse the assignment and the declaration statements to
translate arguments passing during function calls.

3.5 Generation of useful annotations for static analysis

When an array is accessed using
a non-constant index, there might be

int t[10];
; j =β

(

t + belongs[0,9](iβ) × 4
)

β
;int i,j;

j = t[i];

a buffer overflow during the execution. C2newspeak uses the belongsI operator
to explicit the verification that has to be done by an analyzer. We will discuss
in 4.1 a case where I can not be determined at compilation time.

The manipulation of x and t use once
again the shift operator +. We also discover
here the “address of” operator & and the
pointer dereference [·]. Let’s notice that both

int* x;

;

int t[100]; x =ptr &400t + (3 × 4);
x = &t[3]; x =ptr xptr + (5 × 4);
x = x + 5; [xptr]4 =ints

4
3;

*x = 3;

have annotations useful for implementing pointer checks during static-analysis:
the first one to remember how many bytes can be addressed from the pointer
created, and the second one to explicit the size of the area dereferenced.

4 Implementation

4.1 Organization of the compiler

Our compiler is implemented in OCaml [11]. It proceeds in several steps. We use
CIL [15] to parse C programs and start with a CIL syntax tree. Several problems
must then be overcome in order to get to a Newspeak file.

The first difficulty arises from the treatment of the CIL structure. Some arti-
facts introduced by CIL must be undone (for instance gotos and labels generated
in if statements). Constant string variables must be considered as pointers on
global initialized arrays. Static variables must be transformed in global variables
and renamed to avoid name clashes. All these changes are local to each C file
and are regrouped in the first pass.

For a project with several source files performance becomes an issue: com-
piling and merging thousands of files containing each tens of thousands of lines
altogether is very memory-consuming. Furthermore, it can be necessary to an-
alyze a group of files separately from the rest of the project, because the whole
program source code is not available. That is why we have decided to use the
same architecture as a classic C compiler, that is to say, a compiling pass, and
a linking pass.

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

13 2008-IW-SE-00010-1

The compilation takes a preprocessed C file, performs the actual translation,
possibly letting some blanks in variables or function definitions, that will have
to be filled during the linking phase.

For instance, such a blank is introduced when an extern global array, say
extern int myarray[] is declared in some file a.c and its size defined in another
file b.c. If myarray is accessed in a.c, then the array bound check can not be
generated before the linking phase.

Let us stress the fact that C2newspeak handles here
a problem that gcc refuses. In fact, the program in the
margin is rejected by gcc as it cannot compute the size

extern int a[];
int main (void) {

return (sizeof (a));
}

of a.

4.2 C2newspeak usage and performance obtained

By default, C2newspeak applies stringent restrictions on the C it inputs. For
instance, casts between pointers and integers, or multiple definitions of the
same variable are rejected. These protections are lifted if options --castor or
--accept-mult-def are respectively set.

Some compilers also don’t respect the standard fully, and won’t initialize the
global variables with zeros, so we added an option (--no-init) allowing to skip
this initialization during the compilation.

Finally, C2newspeak can take C files to produce compiled object (with the
.no extension), and then take either C and Newspeak object files to link a com-
plete Newspeak program. It is possible to debug every phase of the translation.
For example,

./c2newspeak --npko --cil --newspeak a.c b.c

will print CIL output and produce Newspeak object for both a.c and b.c files
before printing the final result on standard output.

With the right options, we managed in the end to compile a 3.2-million-line
program in one hour and a half, on a standard personal computer.

4.3 Other tools

Some additional utilities have been developed with C2Newspeak:

npkstats produces some statistics about a Newspeak program,

npkstrip takes a Newspeak program and extracts the global variables and func-
tions necessary to the execution of main.

npksimplify performs some simplifications on Newspeak code.

All our programs are available at http://www.penjili.org/newspeak.html with
the C2newspeak compiler and are distributed under the LGPL.

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

14 2008-IW-SE-00010-1

5 Related work

There exists other intermediate languages developed for the transformation and
analysis of C software, such as CIL [15], Elsa [13] and C transformers [3]. Con-
trarily to Newspeak, these representations can be immediately output as a syn-
tactically valid C program. For that, they all use syntax trees still very close
to C, and so too complex and high level for our needs. However CIL is used in
C2Newspeak as a first pass to perform the particularly ungrateful task of parsing
and disambiguating C syntax.

Newspeak is closer to a high-level assembly language, and may be compared
to languages such as the Java bytecode [12] or Microsoft’s Common Intermediate
Language (MS CIL)[9]. However these languages are far from concise (MS CIL
has more than 100 different instructions). They have unstructured control flow
(forward and backward jumps). In addition, both are three-address codes, mean-
ing that complex expressions are broken down into a succession of individual
operations. This may increase the cost of analysis, in particular those that are
sensitive to the number of variables. Both bytecodes include constructions for
object oriented features that are unnecessary for C.

The language closest to ours is probably Cminor [1] used in project Com-
pcert. Compcert is a certified compiler developed in Coq [4]. Cminor’s primitives
capture the same language paradigm as Newspeak but slightly differs. For in-
stance, Cminor’s “exit n” instruction, indicates the number of enclosing blocks
to skip, rather than give the name of a label to jump to. Cminor is not minimal.
For instance, it has both local binding and local variables with whole function
scope; both conditional expressions and conditional statements. Its functions
have explicit arguments and return a value, which necessitates an additional re-
turn statement. Cminor memory model [2] is very close to ours, albeit slightly
higher level: values rather than sequences of bytes are stored in the memory.
Maybe, more importantly, Cminor was designed for compilation, and so lacks
annotations needed by a static analyzer to perform checks.

Caduceus [6] is a verification tool for C that allows to use proof assistants
to prove the correctness of C programs. It translates C into Why’s formalism.
The Why language is ML-like, and thus far from the essence of imperative lan-
guages. Indeed, Caduceus does not handle pointer casts, which is prohibitive
when analyzing embedded software.

6 Conclusion, possible extensions, future work

The amount of work to accomplish in order to analyze real programming lan-
guages can be discouraging. We presented the syntax and semantics of a language
designed for static analysis. As much as possible, we tried to make Newspeak con-
cise and simple, yet expressive enough to capture C paradigms fully. A compiler
from C to Newspeak was implemented and is now provided under the LGPL.
We hope it allows others to quickly implement their static analysis algorithms
and experiment with real C programs.

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

15 2008-IW-SE-00010-1

Newspeak is still an ongoing development. In particular, the exact syntax and
delineation of floating point operations is not fixed yet. Furthermore, if further
ways to simplify and structure the language are found, it will evolve.

In the future, several utilities could be implemented for Newspeak. For in-
stance, rewriting of Newspeak programs, so as to normalize them, would limit
the sensitivity of some static analysis algorithms on syntax. Some tools could
insert hints based on heuristics. Program transformation could lower the number
of variables to improve the performances of subsequent analyses.

Ultimately, as an intermediate language, Newspeak could contribute to de-
couple the analysis algorithms from the source programming language. To that
end, translations from other languages may be implemented. The obvious first
choice would be ADA, which is relatively close to C. Still, it would necessitate
to enrich Newspeak slightly, in particular with primitives that encode exception
handling.

References

1. S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler front-end.
In FM’06, volume 4085 of LNCS, pages 460–475. Springer, 2006.

2. S. Blazy and X. Leroy. Formal verification of a memory model for C-like imperative
languages. In ICFEM, pages 280–299, 2005.

3. A. Borghi, V. David, and A. Demaille. C-Transformers — a framework to write C
program transformations. ACM Crossroads, 12(3), 2006.

4. The Coq development team. The coq proof assistant reference manual v7.2. Tech-
nical Report 255, INRIA, France, 2002.

5. E. W. Dijkstra. Guarded commands, non-determinacy and formal derivation of
programs. Comm. ACM, 18(8):453–457, 1975.

6. Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C pro-
grams. In ICFEM’04, pages 15–29.

7. International Organization for Standardization. Programming Languages, C, In-
ternational standard, ISO/IEC 9899:1990. 1990.

8. International Organization for Standardization. Ada Reference Manual, ISO/IEC
8652:1995. 1995.

9. International Organization for Standardization. Information technology – Common
Language Infrastructure (CLI) Partitions I to VI, ISO/IEC 23271:2006. 2006.

10. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-
1985. Institute of Electrical and Electronics Engineers, 1985.

11. Xavier Leroy, Damien Doligez, Jacques Garrigue, Didier Rémy, and Jérôme Vouil-
lon). The objective caml system release 3.10. Technical report, INRIA, France,
2007.

12. T. Linholm and F. Yellin. The Java Virtual Machine Specification. 1999.
13. S. McPeak and G. C. Necula. Elkhound: A fast, practical GLR parser generator.

In CC’04, 2004.
14. A. Miné. Field-sensitive value analysis of embedded C programs with union types

and pointer arithmetics. In LCTES’06. ACM Press, 2006.
15. G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. 2002.
16. G. D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, University of Aarhus, 1981.
17. A. Venet. Nonuniform alias analysis of recursive data structures and arrays. In

SAS’02, volume 2477 of LNCS. Springer, 2002.

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

16 2008-IW-SE-00010-1

A Newspeak syntax

Newspeak types

β ::= intε
n integer

| ptr pointer
| fptr function pointer

τ ::= β scalar type
| τ [n] array
| {τ1 o1; . . . ; τk ok}n region

Newspeak left value and expressions

constants
k ::= i integer

| nil null pointer

operators
op ::= +,−,×, /, % integer arithmetic

| coerceI integer coercion
| belongsI bound check
| +p,−p pointer arithmetic
| ¬ negation
| ≥β , ==β comparison
| (β1 � β2) type conversion

left values
lv ::= x− local variable

| g global variable
| lv + e address shift
| [e]k pointer dereference

expressions
e ::= k constant

| lvβ left value
| &nlv pointer creation
| &τ1...τk→τf function pointer creation
| op(e) unary operation
| op(e1, e2) binary operation

b ::= e1 . . . ek conjunction
fn ::= fi function name

| [e]τ1...τk→τ function pointer dereference

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

17 2008-IW-SE-00010-1

Newspeak program and commands

commands
cmd ::= clv =β e scalar assignment

| clv1 =n lv2 region copy

| c{τ ; cmdc′} variable declaration
| cmd1 . . . cmdn sequence
| cΣ0<i≤n (bi) → cmd i alternative
| cforever cmd infinite loop
| do cmd with lbl : forward label definition
| cgoto lbl jump
| cfn() function call

initialization
init ::= zero fill with zeros

| {o1 =β1 e1; . . . ok =βk
ek} fill with values

program
prg ::= (τ1 g1 = init1, . . . , τk gk = initk; f1 = cmd1

c1 , . . . , fn = cmdn
cn)

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

18 2008-IW-SE-00010-1

B Newspeak labelling

The following diagram describes the construction of the control flow graph by
induction on syntax.

(τ1 g1 = init1, . . . , τk gk = initk; f1 = cmd1
c1 , . . . , fn = cmdn

cn)

cmd i
ci

c0{τ ; cmdc2}

cmdc2

c0{τ ; cmdc2} c1cmd
c0{τ ; c1cmdc2}

cmd1 . . . cmdn
cn

cmdn
cn

cmd1 . . . cmdn
cicmd i+1

cmd i
ci

cmd1 . . . cmdn
c0cmd1

c0cmd1 . . . cmdn

(cΣ0<i≤n (bi) → cmd i)
c′

cmd i
c′

cΣ0<i≤n (bi) → cmd i
cicmd i

cΣ0<i≤n (bi) →
cicmd i

cforever cmd
cmdc

cforever cmd c′cmd
cforever c′cmd

do cmd with lbl :c

cmdc
do cmd with lbl : ccmd

cdo cmd with lbl :

ccmd cmdc′

ccmdc′

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

19 2008-IW-SE-00010-1

C Newspeak missing semantic element

Size of types

|intε
n| = n

|ptr| = p1

|fptr| = p2

|τ [n]| = n × |τ |

|{τ1 o1; . . . ; τk ok}n| = n

Semantic of unary and binary operations

ρ, σ ` e : v op(v) : v′

ρ, σ ` op(e) : v′

ρ, σ ` e1 : v1 ρ, σ ` e2 : v2 v1 op v2 : v

ρ, σ ` op(e1, e2) : v

Semantic of operators

i1 + i2 : i1 + i2 i1 − i2 : i1 − i2 i1 × i2 : i1 × i2

i2 6= 0

i1/i2 : i1/i2

i1 ≥ 0 i2 > 0

i1%i2 : i1%i2

i2 6= 0 i1 < 0 ∨ i2 < 0 |i′| < |i2|

i1%i2 : i′

When either of the congruence operands is strictly negative, the result is a
number whose absolute value is less than the absolute value of the divisor.

Semantic of infinite loop

cforever c′cmd
(c, ρ, σ, D, S) → (c′, ρ, σ, D, S)

Note that there is no rule for the loop’s back edge, since this is implicitly given
by the control flow graph.

Semantic of initial state

n = |τ |

σ ` τ g = zero : σ[(g, 0) 7→ 0n]

n = |τ | b ∈ Byte
n σ′ = σ[(g, 0) 7→ b] (ε, ε) ` ei : vi

σ ` τ g = {o1 =β1 e1; . . . ok =βk
ek} : σ′[(g, oi) 7→ tobytesβi

(vi)]0<i≤k

ε ` τ1 g1 = init1 : σ1 . . . σk−1 ` τk gk = initk : σk

τ1 g1 = init1, . . . , τk gk = initk : (c0, ε, σk, {g1 . . . gk}, ε)

This document is property of EADS France ; no part of it shall be reproduced or transmitted
without the express prior written authorization of EADS France, and its contents shall not be

disclosed. c©– EADS France – 2008

