
Mealy Verifier: An Automated, Exhaustive, and Explainable
Methodology for Analyzing State Machines in Protocol

Implementations
Arthur TRAN VAN

atran-van@telecom-sudparis.eu
Samovar, Télécom SudParis, Institut

Polytechnique de Paris
Palaiseau, France

Olivier LEVILLAIN
olivier.levillain@telecom-sudparis.eu
Samovar, Télécom SudParis, Institut

Polytechnique de Paris
Palaiseau, France

Hervé DEBAR
herve.debar@telecom-sudparis.eu
Samovar, Télécom SudParis, Institut

Polytechnique de Paris
Palaiseau, France

ABSTRACT
Many network protocol specifications are long and lack clarity,
which paves the way to implementation errors. Such errors have
led to vulnerabilities for secure protocols such as SSH and TLS. Ac-
tive automata learning, a black-box method, is an efficient method
to discover discrepancies between a specification and its implemen-
tation. It consists in extracting state machines by interacting with
a network stack. It can be (and has been) combined with model
checking to analyze the obtained state machines. Model checking is
designed for exhibiting a single model violation instead of all model
violations and thus leads to a limited understanding of implemen-
tation errors. As far as we are aware, there is only one specialized
exhaustive method available for analyzing the outcomes of active
automata learning applied to network protocols,Fiterau-Brostean’s
method. We propose an alternative method, to improve the discov-
ery of new bugs and vulnerabilities and enhance the exhaustiveness
of model verification processes. In this article, we apply our method
to two use cases: SSH, where we focus on the analysis of existing
state machines and OPC UA, for which we present a full workflow
from state machine inference to state machine analysis.

CCS CONCEPTS
• Security and privacy → Logic and verification; Network secu-
rity; Software and application security.

KEYWORDS
Security Protocols, Active Automata Learning, Formal Verification,
OPC UA, SSH

ACM Reference Format:
Arthur TRAN VAN, Olivier LEVILLAIN, and Hervé DEBAR. 2024. Mealy
Verifier: An Automated, Exhaustive, and Explainable Methodology for An-
alyzing State Machines in Protocol Implementations. In The 19th Interna-
tional Conference on Availability, Reliability and Security (ARES 2024), July
30–August 02, 2024, Vienna, Austria. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3664476.3664506

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ARES 2024, July 30–August 02, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1718-5/24/07
https://doi.org/10.1145/3664476.3664506

1 INTRODUCTION
Network protocols are pervasive today and their security is essential
for our systems to work properly. However, the need for more
features and the pursuit of higher security expectations often lead
to complex protocols, paving the way for vulnerabilities.

This complexity manifests itself in lengthy, intricate, and occa-
sionally ambiguous specifications. Thus, creating or maintaining an
implementation of a protocol is quite challenging. In particular, se-
curity protocols have to specify the management of cryptographic
elements and the order of exchanged messages. This requires a state
machine to keep track of the exchange. However, specifications
mostly use natural language and lack formal state machines that
could ease their reading. Thus, implementations are likely to devi-
ate from the intended specification and to differ from one another.
Moreover, even seemingly simple deviations can lead to security
issues. Such vulnerabilities have been observed in secure protocols
such as TLS (e.g. EarlyCSS [1]).

Analyzing discrepancies between implementations and specifi-
cations can leverage active automata learning.

This black box technique extracts a state machine from a system,
which models how implementations handle the message flow.

Active automata learning has been used by many researchers.
Some of them only manually inspect the outcomes state machines
to analyze security issues [11, 12, 20]. However, the complexity of
the state machines may render manual inspection incomplete.

Therefore, formal methods were introduced to analyze them. In
particular, model checking, which is used to study the compliance
between a state model and its specifications, was applied in con-
junction with model learning to SSH [15] or TCP [14]. In addition,
tools dedicated to security analysis such as Tamarin were used with
automata learning [24, 25]. However, all of those methods are not
fully compatible to work in conjunction with model learning to
provide a security analysis. Thus, some wrong behaviors may not
be detected.

To the best of our knowledge, there exists only one prior method
dedicated to exhaustive analysis of model learning outputs related
to network protocols [13]. This method primarily targets the identi-
fication of undesired behavior. The tool can verify if a given statema-
chine exhibits a vulnerability described beforehand. However, vul-
nerabilities or bugs that are undiscovered or not well-documented
may result in oversight. Expressing wrong behaviors complicates
the discovery of new issues or vulnerabilities.

To address this, we develop a method that focuses on expected
behaviors. Our method aims to uncover any deviations from said

https://orcid.org/0009-0003-7382-9952
https://orcid.org/0000-0002-0558-5015
https://orcid.org/0000-0002-1344-4167
https://doi.org/10.1145/3664476.3664506
https://doi.org/10.1145/3664476.3664506
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664476.3664506&domain=pdf&date_stamp=2024-07-30

ARES 2024, July 30–August 02, 2024, Vienna, Austria Tran Van et al.

expected behaviors. Hence, our approach eases the discovery of
novel bugs.

In this paper, our contributions are the following:
• The design and implementation of the Mealy Verifier, a tool
performing a complete analysis of network protocol imple-
mentation from the output of automata learning.

• The reproduction of existing results on SSH. We leverage
existing active automata learning results [15].

• A complete workflow from active automata learning to anal-
ysis for OPC UA. To the best of our knowledge, this is the
first automata learning performed on OPC UA. This work-
flow was performed on 150 different OPC UA servers (differ-
ent versions of several implementations). It highlights the
flexibility of our approach, establishing its applicability to
different network protocols.

• The discovery of new bugs in OPC UA implementations.
Three of them are new vulnerabilities (two acknowledged
with a CVE number). It shows Mealy Verifier’s ability to
discover new bug patterns.

2 BACKGROUND
2.1 Mealy Machines
Networking protocol implementations send and accept a finite set
of messages. A protocol specification describes some message se-
quences. Different responses to the same message are expected
depending on messages already sent. For these reasons, it is com-
mon to represent networking protocol implementation as a finite
state machine. Mealy machines best capture the difference between
input messages (accepted messages) and output messages (send
messages).

Definition 2.1. A Mealy machine,M is defined by a tuple
(𝐼 ,𝑂,𝑄, 𝑞0, 𝛿, 𝜆) where:

• I is a finite set called input alphabet and O is a finite set
called output alphabet.

• Q is a finite set (of states) and 𝑞0 ∈ 𝑄 is the initial state.
• 𝜆 : 𝑄 × 𝐼 → 𝑂 is the output function.
• 𝛿 : 𝑄 × 𝐼 → 𝑄 is the transition function.

In the state diagram of a Mealy machine, an edge from a state 𝑞
with input 𝑖 ∈ 𝐼 is labeled with 𝑖/𝜆(𝑞, 𝑖).

𝜆 is extended to sequences of inputs by defining 𝜆(𝑞, 𝜖) = 𝜖

for 𝑞 ∈ 𝑄 , and for 𝑤 ∈ 𝐼∗, 𝑖 ∈ 𝐼 , and 𝑞 ∈ 𝑄 , 𝜆(𝑞, 𝑖𝑤) =

𝜆(𝑞, 𝑖)𝜆(𝛿 (𝑞, 𝑖),𝑤). 𝐼∗ is the set of words based on 𝐼 , and 𝜖 rep-
resents the empty letter. The behavior of a Mealy machine M
can be defined with the function 𝐴M : 𝐼∗ → 𝑂∗ where ∀𝑤 ∈
𝐼∗, 𝐴M = 𝜆(𝑞0,𝑤). Two Mealy machines M and N are said to be
equivalent if they cannot be distinguished by a sequence of 𝐼∗ i.e
∀𝑤 ∈ 𝐼∗, 𝐴M (𝑤) = 𝐴N (𝑤).

2.2 SSH in a nutshell
The Secure Shell Protocol (SSH) is a cryptographic network protocol
to securely operate network services over an insecure network. It
is mostly used for remote login and command-line execution. SSH
runs over TCP and a typical transcript thereof is described in Fig 1.

An SSH exchange starts with KEXINIT messages, to initiate the
key exchange process. It is used to agree on the cryptographic

Client Server

KEXINIT

KEX30

NEWKEYS
SR_AUTH

KEXINIT

KEX31
NEWKEYS

SR_ACCEPT

Algorithm,
cryptography and

compression
agreement

Key
derivation

Activation of the
encryption

Server
authentication to

client
UA_AUTH

UA_SUCCESS

CH_OPEN
CH_SUCCESS

Client
authentication

to server

Open channel

Protected messages
clear messages

Figure 1: A Typical SSH session beginning

and compression algorithms. Keys derivation is performed through
KEX30 and KEX31 messages. Afterward, a successful key derivation
is notified with a NEWKEYS message to the other party. The follow-
ing messages are protected using the derived keys and the agreed
cryptographic algorithms.

After a successful key derivation, authentication takes place.
Initially, the server proves its identity to the client using
SR_AUTH / SR_ACCEPT messages. Then, the client authenticates
itself to the server with a password or a public key through
UA_AUTH/UA_SUCCESS messages.

Following successful authentication, the client expects to use
the available services such as a remote terminal for example. To
proceed, the client must establish a channel that provides access
to services. Channels are opened using CH_OPEN and CH_SUCCESS
messages.

2.3 OPC UA in a nutshell
OPC UA stands for Open Platform Communication Unified Archi-
tecture. It serves as an interoperability and security norm for data
exchange, particularly in industrial control systems. It is used in
millions of application and standardised as IEC 62541. Our focus
is on the widely employed Client/Server communication model
deployed over TCP. Fig. 2 illustrates a practical example of OPC UA
exchange.

Each exchange starts with a Hello message, to share connec-
tion information such as the buffer size. Then, a so-called secure
channel is established. This mandatory mechanism is meant to
authenticate the OPC UA client application to the server and to
provide the confidentiality and integrity of messages. User authen-
tication and authorization are provided by sessions. It is worth
mentioning that OPC-UA has two security layers: the protocol
distinguishes application-level authentication, where the client ap-
plication authenticates within secure channels from the user-level
authentication, handled with sessions. However, during a discovery
phase, it is also possible to create an unprotected secure channel
without authentication, confidentiality or integrity.

Mealy Verifier ARES 2024, July 30–August 02, 2024, Vienna, Austria

ServeurClient
Hello

Open Secure Channel Request

Acknowledgement

Open Secure Channel Response

Service request
Service Response

Exchange of
connection
parametersCreation of

secure
channel,

key derivation
Session
creation

Session
activation

Use of
service

Not required for
discovery Asymmetric encryption

Symmetric encryptionNo encpryption

Create Session Request
Create Session Response
Active Session Request

Active Session Response

Figure 2: OPC UA exchange

After establishing the secure channel, the client aims to use
the server’s services. A Service is similar to a method call in a
programming language. Services usually focus on the address space,
which is the data that the server exposes to the clients; access to
said address space requires a session. When using OPC UA over
TCP, only discovery services are allowed to be sessionless (OPC UA
session). Sessions are indeed used to ensure user authentication and
authorization. Discovery services are used to discover information
about the server. In particular, it is used to discover the server’s set
of cryptographic primitives and authentication methods. Naturally,
discovery services are allowed to be used with an unprotected secure
channel (i.e. without security).

If a session is required then the client needs to create one and
activate it. No authentication is required for the first operation, the
server only creates a session but does not bind it to a user. When
the client activates the session, it authenticates itself and the server
binds the created session to the client. This two-step mechanism
allows a client to re-use the same session if the underlying con-
nection crashes. Finally, the client can request services from the
server.

In a typical OPC UA exchange, a client establishes the connec-
tion, opens an unprotected secure channel and then discovers the
authorized security policy. Next, the client can close the unpro-
tected secure channel, to establish a new one (with confidentiality
and integrity), and creates and activates a session to access the
address space.

2.4 Active Automata learning
Active automata learning is a part of model learning. Model learning
consists in obtaining the model of a system, called System Under
Learning (SUL). The model is a Mealy machine1 or possibly another
kind of state machine. We choose Mealy machines because they
are an efficient representation of how message flows are handled
which is commonwhen applyingmodel learning to analyze network
protocol behavior [11, 12, 15, 22].

We can distinguish two flavors of model learning, active and
passive learning. Passive learning uses traces of exchange with the
SUL to learn. Consequently, it is not as efficient as active learning

1We exclusively focus on deterministic Mealy machines, which is consistent with the
studied specifications. The word "deterministic" is thus omitted in the rest of the paper.

that interacts with the SUL [6]. Active learning is based on theMin-
imal Adequate Teacher (MAT) framework proposed by Angluin [7]
and later adapted for Mealy machines [23]. A minimal adequate
teacher is an entity that can answer two kinds of queries made by
a learner:

• Output query: The learner asks the response to an input
𝑤 ∈ 𝐼∗. The teacher replies with 𝐴M (𝑤). In the context of
network protocols, each output query is made using a new
connection, to ensure independence.

• Equivalence query: The learner has enough knowledge to
build a hypothetical Mealy machine H . It submits H to the
teacher. If 𝐴M = 𝐴H , the teacher responds that the hy-
pothesis is correct. Otherwise, it provides a counterexample.
Those queries ensure the correctness of the obtained Mealy
machine.

In practice, equivalence queries are approximated with different
strategies using output queries (e.g. [21]). Hence, the obtainedMealy
machine is an approximation of the real behavior. Nevertheless, it
is considered to be sufficiently close to the real one to highlight
message flow issues in all previous works. Moreover, we reproduced
every message flow to ensure their existence.

Algorithms based on the MAT framework rely on a fixed input
alphabet. Network protocols inherently lack such static character-
istics. Operations or message fields that rely on contextual factors
(encryption, sequence number. . .) highlight the inapplicability of
using network protocol’s messages as input alphabet.

To address this challenge, the learner uses a fixed alphabet, where
each letter corresponds to one message of the network protocol. An
intermediate component, the mapper, is responsible for translating
these abstract letters into actual network protocol messages (as
shown in Fig. 3). For example, the letter could be the string "Hello",
which the mapper would translate to an actual OPC UA Hello
message.

Learner Mapper System Under
Learning (SUL)

M concretization(M)

R
abstraction(R)

abstract messages protocol messages

Figure 3: Active learning in practice

During the learning phase, the learner has no knowledge of
the correct sequence of messages. Hence, the mapper have to deal
with absurd sequences of messages regarding the specification.
Furthermore, the mapper have to fill some field with default value
when they have not be determined with previous messages.

3 STATE OF THE ART OF MEALY MACHINE
ANALYSIS

As previously explained, model learning is an effective method
to study the security of network protocol implementations. This
method has been used for protocols such as TLS [22], SSH [15],
TCP [14], or 802.11 handshake [20]. To analyze the obtained Mealy
machines, some articles rely on manual inspection [12, 20]. This

ARES 2024, July 30–August 02, 2024, Vienna, Austria Tran Van et al.

method is not suitable for complex Mealy machines. In particular,
model learning implies having complete Mealy machines, meaning
that from every node there is an outgoing edge for each letter of the
input alphabet. Hence, even Mealy machines with a limited number
of nodes may be challenging to read. Thus, manual inspection
cannot guarantee systematic analysis.

Formal methods were introduced to enable a systematic analysis.
Model checking is a method used to verify the compliance of a
system. It aims to prove properties on a state machine modeling
the system. Therefore, it seems quite adapted to the problem and
several protocol implementations were analyzed with model check-
ing [14, 15]. However, since a single counterexample is sufficient
to prove the falseness of a property, model checking focuses on
finding one counterexample to verify the falseness of a property. To
uncover additional counterexamples related to a property, develop-
ers must iterate the process of model learning and model checking.
Between each iteration of this process, the previous counterexam-
ple should be fixed in the Mealy machine. This iterative process is
time-consuming.

Previous works [24, 25] use Tamarin, a tool dedicated to security
protocols’ formal verification. This tool is efficient however it is not
designed for this purpose. To use Tamarin, the solution provided is
to extract every path from the initial state of the state machine and
use Tamarin on them. However, Mealy machines obtained from
active automata learning contain a lot of cycles because they are
complete. With cycles, the number of paths explodes. The reason is
straightforward: when cycles exist on a path, we need to examine
each path augmented with every combination of the cycles. Hence,
many paths cannot be treated and strategies to reduce the number
of paths to a restricted number of suspicious paths are used. In this
case, we cannot be sure that the Mealy machine is compliant with
the properties because there is still a possibility that an unexamined
path proves the opposite.

Recently a specific method has been developed to address this
issue [13]. It is inspired by the SPIN model checker method [19]
and uses Deterministic finite automaton (DFA) intersection. We
can easily translate a Mealy machine into a DFA by splitting edges
into two, one containing the input and the other the output. To
use this method, we have to describe the undesired behaviors as
a DFA. The intersection of the undesired behavior and the state
machine results in a comprehensive set of wrong behaviors. CVEs
and specifications can help to build a large database of undesired
behaviors. Furthermore, if there exists a perfect state machine,
we may add a spurious state and find every wrong behavior. The
strength of this method is its exhaustiveness. The exhaustiveness
comes with being able to find every counterexample regarding
a property. With a perfect state machine and spurious state, this
method can find every single counterexample. However, there is no
such thing as the perfect state machine for most network protocols.
Hence, we are limited to identifying the specific incorrect behaviors
that are in our database of undesired behaviors. Nevertheless, to
ensure the security of network protocol implementations, we are
required to be able to discover new bugs. Furthermore, a bug could
manifest in various ways and may not be covered by the description
used to analyze the Mealy machine.

To our knowledge, the SPIN-based method is the only one dedi-
cated to the analysis of secure protocols’ Mealy machines.

4 MEALY VERIFIER
Our objective is to offer a tool to study discrepancies between a spec-
ification and its implementation through the utilization of expected
behaviors. Using expected behavior facilitates the formulation of
properties that an implementation must verify. Importantly, we do
not make assumptions about how a property is violated. Conse-
quently, this tool can discover new bugs. Furthermore,We provide
exhaustivity. It means that all counterexamples are provided.

TheMealy Verifier is a tool written in Rust, which aims to provide
exhaustive and expressive Mealy machine analyses. This tool is
available on GitHub https://github.com/artfire52/Mealy-Verifier. It
is designed to detect bugs and vulnerabilities. To provide a complete
analysis of network protocol implementations, it must be combined
with model learning.

4.1 Design Rationale
The Mealy Verifier is built upon the concept of specifying expected
behavior. Rather than offering a comprehensive syntax to cover
all potential expected behaviors, we adopt an ad-hoc approach
by presenting various types of properties. The motivation is that
expected behaviors are often similar, thus we can limit the expres-
siveness of our properties to simplify their complete verification.
Mealy verifier’s properties refer to a kind of expected behavior.
Expected behaviors are expressed using those properties. Further-
more, we develop an algorithm for each kind of property rather
than a global one. It facilitates providing exhaustiveness for a large
set of behaviors rather than having a very narrow expressiveness.
Those algorithms aim to find all counterexamples for the specified
property. However, we can highlight the common part of those
algorithms. Those algorithms are based on the Depth First Search
(DFS) algorithm or an exhaustive comparison with edges.

Moreover, there is no false positive in the output of our algo-
rithms. All proof and algorithms are given in the Mealy Verifier
repository.

The Mealy Verifier outputs graphs. There are two types of out-
puts. The first one is a graph that highlights the reason why a
property is violated (see in Fig 4). For example, if a state and a tran-
sition are not expected to be there, they are present in the output
graph. Consequently, the graph contains every counterexample.
The second one is a graph where every path on the graph is a
counterexample (an example is shown later in Fig 7).

Before explaining every type of property considered by theMealy
Verifier, we have to define some vocabulary that we use to make
it clearer. A Mealy machine contains states and events. An event
is a pair of one letter, an input and one output. Events are written
i/o. Inputs and outputs are written using input and output letters
with an extended syntax. Wildcards can be used to designate sev-
eral letters at once. For example, "auth_*" may correspond to any
authentication method (password, public key). We also introduce
the negation. For example "!A" designates every letter other than A.
Finally, the syntax allows an or operation with letters. For example,
"A+B" means the letter "A" or the letter "B". This syntax facilitates
the writing of properties.

Properties are written using events. The algorithms compare
properties’ events to the ones contained in the rules. It is done by

https://github.com/artfire52/Mealy-Verifier

Mealy Verifier ARES 2024, July 30–August 02, 2024, Vienna, Austria

comparing inputs to inputs and outputs to outputs. Every algorithm
only requires the Mealy machine and the rule itself.

4.2 Properties
We detail every property available with the Mealy Verifier. This
set of properties is sufficient for large use cases and a high number
of properties. We do not detail the syntax of the rules, all syntax
information is available on the GitHub repository.

Sink as termination. A sink state is a state where no outgoing tran-
sition leads to another state. Thus, a sink state is entirely defined
by the events labeling its outgoing edges. We usually expect a sink
state to correspond to an end-of-connection state.

This type of property aims to verify if the sink states present in
the Mealy machine match the given descriptions. The description is
made by giving the authorized events labeling the outgoing edges
of the sink state. A sink state that does not match the description is
a counterexample.

For example, we could be interested in finding only sink states
corresponding to the end of the connection. We could specify this
sink state by the event */Eof. It means that we are only expecting
a sink state corresponding to the end of the connection. If there
is another sink state, where the server remains silent and keeps
the connection indefinitely open; this could potentially enable a
denial-of-service attack.

Sink as target. This type of property aims to verify if a precise event
leads to one sink state matching a description. This description
is specified with a list of accepted outgoing events and the event
leading to one of the specific sink states.

For instance, we can ensure that some error message leads to
the sink state corresponding to the end of the connection. The
difference with the previous one is that we focus on the event
triggering a transition to a specific sink state.

Several sink states may exist on the Mealy machine due to the
abstraction related to the mapper. For example, the mapper may
respond directly without asking the SUL, if some input letters are
supposed to change the behavior of themapper. In the SSH inference
paper [15], only one channel could be used. Thus, the mapper will
answer directly to the learner that it cannot create a new channel
when one is already open. The behavior is similar when the learner
asks to close a channel when none is opened. Hence, there are
several sink states, one with an open channel and one without an
open channel.

Output. For certain messages received by the server, we want it to
respond with only a limited choice of replies. This is particularly
the case for malformed messages, for which we hope to receive
an error message or a termination of the connection in response.
It is not restricted to malicious messages. For example, the SSH
inference paper [15] mentions that the SSH server must reply to the
SR_AUTH message with SR_ACCEPT or shut the connection down.

A counterexample is an event with the corresponding input that
has an unauthorized output. An example is given in Fig 4. SR_AUTH
is ignored by the server which violates the property mentioned
previously.

23 31

25 12

SR_AUTH / No resp SR_AUTH / No resp

Figure 4: Example of Unexpected output for the input
SR_AUTH.

Expected events Index. We may expect some event to appear at a
precise moment in every sequence of messages. For example, the
OPC UA Hello message is expected to be the first message accepted
by the server. A counterexample is a transition that occurs on a
path at the given position and that does not match the given event.
Events leading to sink states are ignored because it means that the
server ignores the message. That is the expected behavior in case
of an unexpected message at the given position.

Expected events Sequence. We may expect to observe sequences of
events.

Specifically, when an operation of the protocol implies a list
of events to be observed in a precise order as an uninterrupted
sequence. When an event on a path matches the first event in the
list, then the Mealy Verifier will verify that the following ones
also match the sequence. However, there are two exceptions. The
first one is if a transition leads to a sink state. It means that the
server refuses the unexpected message. This a correct behavior.
The second exception is a list of events that are authorized. Those
events are authorized to interrupt the sequence and specified in the
property. The main use is to authorize a message rejection that does
not lead to a sink state. For example, we can authorize every event
matching with the server ignoring the messages or responding with
an error. Those authorized events are defined when writing the
rule.

For example, in OPC-UA, if we consider the sequence of events
hello/ack then open_secure_channel_request / OpnRepOk. The
state reached after the Hello OPC UA message may contain a cycle
to itself with one event such as read_req/No resp. It does not indi-
cate that the cycle does not comply with the specified property but
that the server ignores other messages different from the expected
ones. This event could be written as */No resp in this example.

The output of this rule will be the states and transitions that
are responsible for the violation of the rule. If the sequence is
violated for an event, we do not continue to verify if the sequence
is respected.

Conditional event. This type of property is the most adapted for
security properties.

Some actions related to network protocols require prerequisites.
With Mealy machines, the action and the prerequisites are events.
The action is expected only if prerequisites are satisfied. For ex-
ample, reading data on an OPC UA server requires user authen-
tication. This corresponds to the action specified with the event
read_req/ReadRepOK while the user authentication prerequisite
corresponds to the event activate_session/AcSesResOK.

To specify this type of property, we need to specify the
event corresponding to the action that requires prerequisites.

ARES 2024, July 30–August 02, 2024, Vienna, Austria Tran Van et al.

And we also require to specify prerequisites with events i1/o1,
i2/o2. . .Nevertheless, it is not sufficient. A prerequisite can be can-
celed by another event. If we still consider the example of OPC UA
client reading on the server, the event that corresponds to closing
the session cancels the prerequisite of user authentication. Hence,
a prerequisite is a pair of events. The first event is used to change
the state of the prerequisite from False to True, in our example,
it is activate_session/AcSesResOK. The second event is used to
change the internal state from True to False and in our example,
it is close_session/CloSesResOK. We note the prerequisites as:

activate_session/AcSesResOK|close_session/CloSesResOK.

If more than one prerequisite is required to specify a property,
the order is important. A prerequisite can become true only if
previous ones are true. Furthermore, if a prerequisite is canceled
by an event, all following prerequisites become false. In the case
of an authentication with several events, it means that the whole
authentication has to be done again to satisfy the prerequisites.
If we continue with our example, by considering the creation of
a session as an additional prerequisite, it means that a session
can only be activated if it has been created before. A simplified
counterexample is given in Fig. 5. We remind the property has the
following prerequisites:

• create_sessions/CreSesResOk |close_session/CloSesResOK
• activate_session/AcSesResOK |close_session/ CloSesResOK

And the action is Read_req/ReadRepOK. In Fig. 5, a user can read in
the address space without activating a session. However, activating
the session is required to prove the user’s identity.

0 1 2
Open secure channel/

OpenRepOk,
Create session/

CreSesOk, Read req/
ReadRepOK,

Figure 5: An actual violation of the Conditional Rule about
Data Reading for OPC UA. The user can run a Read_req re-
quest even if the session has not been activated

Importantly, events can separate prerequisites. As long as they
are satisfied when the action is observed, the behavior is correct.
There is no need to verify them uninterruptedly. This type of prop-
erty verifies that prerequisites are satisfied when the action is ob-
served.

To find counterexamples, the algorithm behind this property
leverages DFS starting from the state where the action is observed
and using the transposed Mealy machine (the direction of the edges
is reversed). It facilitates the detection of events that can cancel a
prerequisite.

It is worth noting that this rule has a very specific output. It
may have several graphs as output, one per state that has an out-
going edge with the label corresponding to the action. In those
graphs, we ensure that every path, from a state without ingoing
edges (excluding cycles) to a state where the action is observed, is a
counterexample. To guarantee this feature, a state can be split into
several states with the same name. The reason thereof is illustrated
in Fig. 6 and in Fig. 7. The applied rule is the same as before except
that we simplified the notation. The action is ia/oa and prereq-
uisites are as the action event and the prerequisites are i1/o1 |

ī1/ō1 and i2/o2 | ī2/ō2. In Fig. 6, We consider a subgraph of a
Mealy machine manually created. The path following transitions
at the top serves as a counterexample, as do the path following
transitions at the bottom Thus,the output cannot omit any edge
without lacking a counterexample. Nonetheless, a path respecting
the property is present when taking the transition other/other
and i2/o2. Thus, the graph in the figure does not only contain
counterexample paths.

0 1 2 3
i1/o1

i2/o2

other/other other/other

ia/oa

Figure 6: Example of an output without splitting the states.
Other designate messages other than the one present in the
specification of the property

To tackle this issue, states are split in Fig. 7. It means that the
state with the same name in this output graph refers to the same
state in the Mealy machine. Each node labeled 1 is corresponding
to the node 1 in the Mealy machine. We can observe that with the
splitting operation, every path is a counterexample. Each state has
different information regarding the property. Those information
are the prerequisites and event able to cancel them between the
state and the state where the action is observed.

0

0

0

1

1

2

1 2

3

i1/o1

i1/o1

i1/o1
other/other

other/other

i2/o2

Figure 7: Example of an output with splitting the states

Restricted events. In some circumstances, the authorized events are
limited. For example, wemay not accept a second successful user au-
thentication after a successful one. This is the case for SSH. Hence,
after a successful authentication only events */!UA_SUCCESS are
authorized. The property verifies that only the given events are
present. This restriction is verified after a starting event has been ob-
served (or after the initial state if the starting event is not provided).
In the previous example, the starting event is the first authentica-
tion. The restriction is not applied when a release event is reached
(or in a sink state if the release event is not provided). The aim is
to apply a restriction on authorized events to subgraphs. We also
added an event that cancels the rule. When this event is reached the
rule will not apply even if the starting event is met. It is different
from the release because it aims to avoid applying the property and
not only to stop its verification. Eventually, the output is simply
the states and transitions that do not respect the rule.

Mealy Verifier ARES 2024, July 30–August 02, 2024, Vienna, Austria

5 SSH
This section focuses on the test cases used to evaluate the Mealy
Verifier. Studying several protocols is proof that the tool is not spe-
cific to a given protocol. For SSH, we use existing Mealy machines
provided in previous work [15].

5.1 Experiments
For SSH, we leverage existing Mealy machines extracted from
Fiterau-Brostean et al. [15]. In this article, SSH is studied with
the model checker NuSMV [9]. We aim to replicate their study with
our method, to demonstrate the applicability of our method to pro-
tocols beyond OPC UA. Fiterau-Brostean’s mentions 12 properties.
We explain them and precise which type of property is used to
model them in the Mealy Verifier:

(1) When the output of an edge indicates that the TCP connec-
tion is closed (NO_CONN), the edge leads to a sink state (Sink
target).

(2) The SSH mapper can only handle one channel at a time. Due
to this limitation:

(2.1) A channel cannot be opened while another is already open
(Restricted event).

(2.2) A channel cannot be closed unless one is opened (Re-
stricted event).

(3) Server authentication can only happen after observing key
derivation messages (Conditional event).

(4) To open a channel, a client must be authenticated (Condi-
tional event).

(5) It must be possible to rekey at any time after server authen-
tication (pre-auth) or client authentication (auth) (Expected
event sequence).

(6) When the output of an edge indicates disconnection
(DISCONNECT), the edge leads to a sink state (Sink as target).

(7) The server refrains from sending another KEXINIT until it
has transmitted SR_ACCEPT (Restricted event).

(8) Server responds to SR_AUTH with SR_ACCEPT or end of con-
nection messages (NO_CONN or DISCONNECT) (Output).

(9) After the server authentication and before a successful client
authentication, the server responds with a failure message
for an incorrect user authentication attempt (Restricted
event).

(10) There is only one successful user authentication per connec-
tion (Restricted event).

(11) After successful client authentication, SR_AUTH message
must be ignored (Restricted event).

(12) When a channel is opened successfully, the server responds
to the first CH_CLOSE with CH_CLOSE (Restricted event).

Those properties were checked on three implementations: Drop-
Bear, OpenSSH and Bitvise with one Mealy machine for each
one. Our aim is first to reproduce the results with the model
checker NuSMV and then to reproduce them with our method.
However, Fiterau-Brostean et al. highlight that Bitvise implementa-
tion buffered outputs and the output vocabulary is different. Con-
sequently, the rules need to be written differently. However, the
repository does not provide those new properties. Thus, we could
not reproduce the results for Bitvise implementation. We focus on

OpenSSH and DropBear which have common properties provided
in the repository given with SSH previous work.

5.2 Results
As previously said, we focus on OpenSSH and DropBear implemen-
tation. We reproduce the results previously obtained by Fiterau-
Brostean [15]. We first replicate the results obtained with the model
check NuSMV. Then, we apply our method to SSH Mealy machines.

We obtained the same results regarding violated and respected
properties. However, the exhaustivity provided by our tool permits
us to discover a new reason for one of those violations compared
to previous work.

We diverge on the interpretation of property 8 for OpenSSH. This
property mentions that only SR_ACCEPT, NO_CONN and DISCONNECT
are acceptable replies to SR_AUTH. In the original study, property 8 is
said to be violated because of an UNIMPL response. Our tool provides
all the counterexamples related to these violations. Hence, we can
verify that property 8 also presents an issue with unexpected NO
RESP answers. Whether it is a simple issue or more is up for debate
but it highlights the importance of having exhaustiveness. We can
easily verify it with all counterexamples. With model checking,
the solutions are to manually verify on the Mealy machine or to
fix the Mealy machine until no counterexamples are found. Fixing
the Mealy machine might be a time-consuming and challenging
task, as it involves either manually analyzing the Mealy machine
or iteratively applying rounds of corrections of counterexample
from NuSMV, followed by rerunning the model checker. This is a
use case where our tool is better than the previous approach for
network protocol stack Mealy machine analysis.

6 OPC UA
Our work introduces a complete workflow for OPC UA, from active
automata learning to analysis. The inference and analysis of OPC
UA Mealy machines represent novel contributions. We chose OPC
UAbecause, to our knowledge, no previousmodel learningwork has
been done on it. Additionally, OPC UA is widely used in industrial
contexts.

6.1 Experiments
To perform model learning, we create our mapper. The mapper
must be flexible as mentioned previously. Modifying an existing
OPC UA implementation requires a deep understanding of it and to
rewrite every internal mechanism. Thus, creating a dedicated im-
plementation to function as a mapper is easier but still challenging.
Finally, we created our mapper from scratch.

The inference tools is available on GitHub at https://github.com/
artfire52/opc-ua-inferer.

We select the input alphabet to study the handshake, secure
channels, sessions and reading/writing operations in the address
space. In other words, we focus on the security of address space
access, leading to shorter Mealy machine inference (from 1 hour to
10 hours depending on the implementation). The vocabulary used
is described in the Mealy Verifier repository. We were interested in
four implementations:

• UANET: the official implementation [3] written by the OPC
Foundation responsible for OPC UA standard.

https://github.com/artfire52/opc-ua-inferer
https://github.com/artfire52/opc-ua-inferer

ARES 2024, July 30–August 02, 2024, Vienna, Austria Tran Van et al.

Properties 1 2.1 2.2 3 4 5.auth 5.pre-auth 6 7 8 9 10 11 12
DropBear ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

OpenSSH ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗* ✓ ✓ ✗ ✓

Table 1: Results of SSH’s Mealy machine analysis.
* interpretation slightly differs from previous work.

• Open62541: reference implementation written in C with an
OPC UA certification for an example server [5].

• S2OPC: a stack with an OPC UA certification for an example
server and an ANSSI certification [2];

• opcua-asyncio: most famous python stack for OPC UA [4].

We use model learning on several versions of each implementation.
The SUL were the example servers given by developers in their
repositories. We use two scenarios for our inferences. The first
scenario, called protected scenario corresponds to secure exchanges
with encryption and signature. The second one, called unprotected
scenario corresponds to exchanges without these security measures.
Overall, combining all versions of the stacks and the two scenarios,
we inferred 150 Mealy machines. We use the learning algorithm
L* [7] with the pylstar implementation [8]. We adapt pylstar to
infer faster the SUL, using the optimization presented in previous
work [22].

The OPCUA specifications ([17], section 4.3.2.3) mention that the
number of sessions and the number of secure channels are limited.
Thus, when inferring an OPC UA implementation, we cannot be
sure that a session or a secure channel will be available on the
server. Therefore, two successive output queries with the same
prefix could lead to different results. For example, one succeeding
in opening a secure channel, and the second one failing due to the
limitation of secure channels. From the point of view of the learning
algorithm, it is seen as non-deterministic behavior. Since we only
consider deterministic Mealy machines, the inference will thus fail.

To address this challenge, we propose the learning architecture
presented in Fig. 8. The learner is sending one output query at a
time but the target server changes for each query. All targets are
running the same SUL. We also assume that output queries do not
interfere with each other when the maximum number of sessions
or secure channels are not reached. By choosing the appropriate
number of targets, we can ensure that session’s and secure channel’s
timeouts are reached before making an output query to the same
server. Those optimizations help accelerate the inference process.

After inferring OPC UA’s Mealy machines, we aim to verify the
following properties with the Mealy Verifier:

(1) Valid OPC UA communication starts with a Hello message
([16] section 7.1.3) (Expected Event Index).

(2) The second step in communication is to establish a secure
channel ([16] section 7.1.3) (Expected Event Index).

(3) The secure channel request comes immediately after the
Hello message (This property allows gathering more infor-
mation than (1) and (2) since the Hello message can appear
later in certain OPC UA stacks) ([16] section 7.1.3) (Expected
Sequence Event).

(4) Session creation requires a secure channel ([18] section
5.6.2.1) (Conditional Event).

docker network
192.123.156.0/24

L*+
Mapper

target
server

target
server

target
server

target
server

target
server

target
server

target
server

target
server

OPC UA
messages

Docker
Container

Figure 8: Learning architecture for OPC UA

(5) A session is activated after its creation ([18] section 5.6.3.1)
(Conditional Event).

(6) Only an authenticated user (i.e. a user with an active session)
has access to the address space ([18] part 6.3.1) (Conditional
Event).

(7) Malformed messages used for inference must be rejected by
the server (Output).

(8) Address space access must not be allowed on unprotected
secure channels ([17] section 5.1.3) (Output).

(9) Only one sink state, corresponding to the end of the connec-
tion, is present (Sink as termination).

6.2 Results
Close versions of the same implementation are often similar. From
150 inferred Mealy machines, it remains 19 distinct Mealy machines.
Unless stated otherwise, every bug or vulnerability mentioned be-
low is new and was discovered with the Mealy Verifier. The only
exception is UANET in which we did not discover new bugs or vul-
nerabilities. Those results are condensed in Table 2. As a reminder,
in the context of OPC UA, two scenarios are used: the protected
one involving confidentiality and integrity and the unprotected
one without these security features. All the issues presented in this
section have been reproduced.

6.2.1 Connection establishment. The issues mentioned here are
highlighted by the three first properties used to verify the behaviors
of OPC UA servers.

Initialization. All OPC UA exchanges that are initiated by the
client must begin with a Hello message. However, Open62541 and
opcua-asyncio accept the secure channel establishment to be the
first message. However, Hello message is mandatory to be the
first one sent by the client according to specification. It is required
for the negotiation of the buffers’ size. However, it does not seem

Mealy Verifier ARES 2024, July 30–August 02, 2024, Vienna, Austria

Implementation Mode Version Initialization Auth
After
close

Session
bypass

Anonymous
Session

Sink
State DOS

Open62541
P

v1.1.* ✗

v1.2*
v1.3-v1.3.3 ✗

U v1.1.* ✗

v1.2*-v1.3.3
S2OPC P&U 1.1.0,1.2.0,1.3.0 ✗

opcua-asyncio
P

v0.9.0-v0.9.92 ✗ ✗ ✗

v0.9.3-0.9.95 ✗ ✗ ✗ ✗

v0.9.97-v1.0.1 ✗ ✗

U v0.9.0-v0.9.95 ✗ ✗ ✗

v0.9.97-v1.0.1 ✗ ✗ ✗

UANET P 1.03.350-1.4.371.50 ✗ ✗

UANET U 1.03.350-1.4.371.50
Table 2: Results of OPCUAMealymachines analysis. P: protected scenario. U: unprotected scenario. Marks indicate the violation
of the property.

to have much consequences on the normal behavior of the OPC
UA exchange because servers use default size for buffers. It is an
anomaly but not a vulnerability.

6.2.2 Sessions. We focus on rules concerning session use. A session
must be used above a secure channel and ensure user authentica-
tion.

Authentication. Two tested implementations are vulnerable to
authentication with the wrong token. Open62541 target server
was vulnerable to wrong certificate authentication. The problem
is that an optimization dedicated to Linux introduces the wrong
management of accepted certificates. Hence, every certificate is
accepted. UANET is vulnerable to wrong credentials authentication.
Any credentials are accepted. In both cases, using a secure channel
is required. Secure channels can only be established with authorized
client applications. Thus, those issues remain limited.

Session bypass. Using the unprotected mode, opcua-asyncio does
not verify if the session is activated. It only checks for a created
session. Thus, no user authentication is performed. Using unpro-
tected mode and bypassing the user authentication, no security
remains. Any malicious user can freely access the address space, no
security remains. This new vulnerability has received the number
CVE-2023-26150.

Closed session. The address space is reachable after closing the
session for opcua-asyncio. The consequences are limited because
only an authenticated user using an authenticated application is
allowed to access the address space. Even if it is not a security
threat, it remains an unexpected behavior.

Anonymous session. Anonymous sessions are not forbidden in
the specification. Nevertheless, they must be disabled by default.
Moreover, example servers should not encourage bad habits. It
affects S2OPC and UANET where the problem lies in the configura-
tion of example servers. It is a matter of concern when we know
that OPC UA security configuration is an issue in most cases [10].
However, the security offered by secure channels remains. Thus,
using an authenticated application is still required.

6.2.3 Multiple sink states. We expect to have only one sink state
that corresponds to the end of the connection. Nevertheless, we can
observe two sink states in several opcua-asyncio Mealy machines.
The second sink state corresponds to a state where the connection
is kept alive. This could lead to a denial of service attack. To reach
the second sink state establishing a secure channel is required. How-
ever, secure channels have a timeout and their number is limited.
An attacker can not create enough secure channels to threaten the
server. Thus, this has only a weak impact on the implementation.
Furthermore, the potential attack against the limited number of se-
cure channel is out of the OPC UA scope. Nevertheless, we highlight
that it is still an undesired behavior.

6.2.4 Denial of service. We can obtain results directly from the
inference phase. When inferring opcua-asyncio, we encountered
some availability issues which can lead to denial of service attacks.
The server is stuck in an infinite loop. The server is asynchronous
and not multi-threaded. Hence, no other client can access the server.
Furthermore, in this loop, the server allocates memory and may
have impact on the host. Moreover, this vulnerability is very easy
to exploit and makes it a real threat. It can be performed with only
one message sent. This message can be the first one of the OPC UA
exchange. This new vulnerability has received the CVE-2023-26151.

7 PERFORMANCE INSIGHT
The performance evaluation was conducted on a personal laptop
equipped with an Intel® Core™ i5-1145G7 CPU and 16 GB of RAM.
We focus on SSH Mealy machines because of their size and com-
plexity compared to OPC UA ones. Using scenarios for OPC UA
inference implies having simpler and more precise Mealy machines.

Our tool required a total runtime of approximately a half second
for the analysis of the two SSH Mealy machines. The analysis of
individual performances reveals a runtime of around 0.3s for the
OpenSSH Mealy machine (30 states and 630 edges). Comparably,
around 0.2s were required for the DropBear Mealy Machine (28
states and 364 edges).

ARES 2024, July 30–August 02, 2024, Vienna, Austria Tran Van et al.

Because our algorithms are based on DFS, they have a linear
complexity in the number of states and edges. Thus, our tool scales
well with a larger Mealy machine.

8 CONCLUSION
We present a complete method to analyze the behavior of network
protocol implementations. In particular, we provide a complete anal-
ysis workflow of OPC UA implementations leading to the discovery
of new bugs and vulnerabilities.

The Mealy Verifier is more precise than classic model checking
since it provides a complete set of counterexamples related to a
property. Naturally, it is far better than manual inspection because
results can easily be reproduced and provide exhaustiveness. The
exhaustiveness eases the understanding of wrong behaviors and
aims to avoid missing one wrong behavior that could be related
to the same property. Also, compared to the previous existing so-
lution [13], our tool provides a way to specify expected behavior.
It changes the perspective and may facilitate the formulation of
properties rather than gathering unexpected behavior or having
to specify the expected state machine. Moreover, our properties
encourage the use of specific properties and to split properties into
atomic ones. It helps with the analysis of undesired behaviors.

Furthermore, exploring the integration of verification in the
active automata learning phase can enhance the performance of
the all process. The workflow is time-consuming and the learning
phase is the bottleneck. Melding the two processes may lead to a
time-saving solution.

ACKNOWLEDGMENTS
This work is funded by the French Defense Innovation Agency
(AID) under contract n° 2021650010 (CERES).

REFERENCES
[1] [n. d.]. CVE - CVE-2014-0224. Available from MITRE, CVE-2014-0160.. https:

//cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0224
[2] [n. d.]. Systerel / S2OPC · GitLab. https://gitlab.com/systerel/S2OPC
[3] 2023. Official OPC UA .Net Standard Samples from the OPC Foundation. https:

//github.com/OPCFoundation/UA-.NETStandard-Samples original-date: 2020-05-
28T13:53:11Z.

[4] 2023. opcua-asyncio. https://github.com/FreeOpcUa/opcua-asyncio original-
date: 2018-08-02T07:45:42Z.

[5] 2023. open62541. https://github.com/open62541/open62541 original-date:
2013-12-20T08:45:05Z.

[6] Bernhard K. Aichernig, Edi Muškardin, and Andrea Pferscher. 2022. Active vs.
Passive: A Comparison of Automata Learning Paradigms for Network Protocols.
Electron. Proc. Theor. Comput. Sci. 371 (Sept. 2022), 1–19. https://doi.org/10.4204/
EPTCS.371.1

[7] Dana Angluin. 1987. Learning regular sets from queries and counterexamples.
Information and Computation 75, 2 (Nov. 1987), 87–106. https://doi.org/10.1016/
0890-5401(87)90052-6

[8] Georges Bossert. 2023. pylstar : An implementation of the LSTAR Grammatical
Inference Algorithm. https://github.com/gbossert/pylstar original-date: 2015-
11-17T12:37:55Z.

[9] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,
Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. 2002.
NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In Computer Aided
Verification, Gerhard Goos, Juris Hartmanis, Jan Van Leeuwen, Ed Brinksma, and
Kim Guldstrand Larsen (Eds.). Vol. 2404. Springer Berlin Heidelberg, Berlin,
Heidelberg, 359–364. https://doi.org/10.1007/3-540-45657-0_29 Series Title:
Lecture Notes in Computer Science.

[10] Markus Dahlmanns, Johannes Lohmöller, Ina Berenice Fink, Jan Pennekamp,
Klaus Wehrle, and Martin Henze. 2020. Easing the Conscience with OPC UA:
An Internet-Wide Study on Insecure Deployments. In Proceedings of the ACM
Internet Measurement Conference. ACM, Virtual Event USA, 101–110. https:
//doi.org/10.1145/3419394.3423666

[11] Lesly-Ann Daniel, Erik Poll, and Joeri De Ruiter. 2018. Inferring OpenVPN State
Machines Using Protocol State Fuzzing. In 2018 IEEE European Symposium on
Security and Privacy Workshops (EuroS&PW). IEEE, London, United Kingdom,
11–19. https://doi.org/10.1109/EuroSPW.2018.00009

[12] Paul Fiterau-Brostean, Bengt Jonsson, Robert Merget, Joeri de Ruiter, Konstanti-
nos Sagonas, and Juraj Somorovsky. 2020. Analysis of DTLS Implementations
Using Protocol State Fuzzing. In 29th USENIX Security Symposium (USENIX Secu-
rity 20). USENIX Association, 2523–2540. https://www.usenix.org/conference/
usenixsecurity20/presentation/fiterau-brostean

[13] Paul Fiterau-Brostean, Bengt Jonsson, Konstantinos Sagonas, and Fredrik Tåquist.
2023. Automata-Based Automated Detection of State Machine Bugs in Protocol
Implementations. In Proceedings 2023 Network and Distributed System Security
Symposium. Internet Society, San Diego, CA, USA. https://doi.org/10.14722/ndss.
2023.23068

[14] Paul Fiterău-Broştean, Ramon Janssen, and Frits Vaandrager. 2016. Combining
Model Learning and Model Checking to Analyze TCP Implementations. In Com-
puter Aided Verification, Swarat Chaudhuri and Azadeh Farzan (Eds.). Vol. 9780.
Springer International Publishing, Cham, 454–471. https://doi.org/10.1007/978-
3-319-41540-6_25 Series Title: Lecture Notes in Computer Science.

[15] Paul Fiterău-Broştean, Toon Lenaerts, Erik Poll, Joeri de Ruiter, Frits Vaandrager,
and Patrick Verleg. 2017. Model learning and model checking of SSH imple-
mentations. In Proceedings of the 24th ACM SIGSOFT International SPIN Sym-
posium on Model Checking of Software. ACM, Santa Barbara CA USA, 142–151.
https://doi.org/10.1145/3092282.3092289

[16] OPC Foundation. 2022. OPC Unified Architecture Mappings. Release 1.05.01.
[17] OPC Foundation. 2022. OPC Unified Architecture Part 2 :Security Model. Release

1.04.
[18] OPC Foundation. 2022. OPC Unified Architecture Part 4 :Services. Release

1.05.00.
[19] G.J. Holzmann. 1997. The model checker SPIN. IIEEE Trans. Software Eng. 23, 5

(May 1997), 279–295. https://doi.org/10.1109/32.588521
[20] Chris McMahon Stone, Tom Chothia, and Joeri De Ruiter. 2018. Extending

Automated Protocol State Learning for the 802.11 4-Way Handshake. In Computer
Security, Javier Lopez, Jianying Zhou, and Miguel Soriano (Eds.). Vol. 11098.
Springer International Publishing, Cham, 325–345. https://doi.org/10.1007/978-
3-319-99073-6_16 Series Title: Lecture Notes in Computer Science.

[21] Arjun Radhakrishna, Nicholas V. Lewchenko, Shawn Meier, Sergio Mover, Kr-
ishna Chaitanya Sripada, Damien Zufferey, Bor-Yuh Evan Chang, and Pavol
Černý. 2018. DroidStar: callback typestates for Android classes. In Proceedings
of the 40th International Conference on Software Engineering. ACM, Gothenburg
Sweden, 1160–1170. https://doi.org/10.1145/3180155.3180232

[22] Aina Toky Rasoamanana, Olivier Levillain, and Hervé Debar. 2022. Towards a Sys-
tematic and Automatic Use of State Machine Inference to Uncover Security Flaws
and Fingerprint TLS Stacks. In Computer Security ESORICS 2022, Vijayalakshmi
Atluri, Roberto Di Pietro, Christian D. Jensen, and Weizhi Meng (Eds.). Vol. 13556.
Springer Nature Switzerland, Cham, 637–657. https://doi.org/10.1007/978-3-
031-17143-7_31 Series Title: Lecture Notes in Computer Science.

[23] Muzammil Shahbaz and Roland Groz. 2009. Inferring Mealy Machines. 5850
(Nov. 2009), 207–222. https://doi.org/10.1007/978-3-642-05089-3_14 MAG ID:
1529010373.

[24] QinyingWang, Shouling Ji, Yuan Tian, Xuhong Zhang, Binbin Zhao, Yuhong Kan,
Zhaowei Lin, Changting Lin, Shuiguang Deng, Alex X. Liu, and Raheem Beyah.
2021. {MPInspector}: A Systematic and Automatic Approach for Evaluating
the Security of {IoT} Messaging Protocols. 4205–4222. https://www.usenix.org/
conference/usenixsecurity21/presentation/wang-qinying

[25] Xieli Zhang, Yuefei Zhu, Chunxiang Gu, and Xuyang Miao. 2021. A Formal
Verification Method for Security Protocol Implementations Based on Model
Learning and Tamarin. J. Phys.: Conf. Ser. 1871, 1 (April 2021), 012102. https:
//doi.org/10.1088/1742-6596/1871/1/012102

https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0224
https://cve.mitre.org/cgi-bin/cvename.cgi?name=cve-2014-0224
https://gitlab.com/systerel/S2OPC
https://github.com/OPCFoundation/UA-.NETStandard-Samples
https://github.com/OPCFoundation/UA-.NETStandard-Samples
https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/open62541/open62541
https://doi.org/10.4204/EPTCS.371.1
https://doi.org/10.4204/EPTCS.371.1
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1016/0890-5401(87)90052-6
https://github.com/gbossert/pylstar
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1145/3419394.3423666
https://doi.org/10.1145/3419394.3423666
https://doi.org/10.1109/EuroSPW.2018.00009
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean
https://doi.org/10.14722/ndss.2023.23068
https://doi.org/10.14722/ndss.2023.23068
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1007/978-3-319-99073-6_16
https://doi.org/10.1145/3180155.3180232
https://doi.org/10.1007/978-3-031-17143-7_31
https://doi.org/10.1007/978-3-031-17143-7_31
https://doi.org/10.1007/978-3-642-05089-3_14
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-qinying
https://www.usenix.org/conference/usenixsecurity21/presentation/wang-qinying
https://doi.org/10.1088/1742-6596/1871/1/012102
https://doi.org/10.1088/1742-6596/1871/1/012102

	Abstract
	1 Introduction
	2 Background
	2.1 Mealy Machines
	2.2 SSH in a nutshell
	2.3 OPC UA in a nutshell
	2.4 Active Automata learning

	3 State of the art of Mealy Machine Analysis
	4 Mealy Verifier
	4.1 Design Rationale
	4.2 Properties

	5 SSH
	5.1 Experiments
	5.2 Results

	6 OPC UA
	6.1 Experiments
	6.2 Results

	7 Performance Insight
	8 Conclusion
	Acknowledgments
	References

