
Parsifal: a pragmatic solution to the binary parsing
problem

Olivier Levillain

ANSSI

May 18th 2014

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 1 / 22

https://github.com/ANSSI-FR/parsifal


Agenda

Motivation: studying SSL/TLS answers

Parsifal

Results

Lessons learned

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 2 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Agenda

Motivation: studying SSL/TLS answers

Parsifal

Results

Lessons learned

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 3 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Analysing SSL/TLS data

How to analyse the 180 GB of data collected on port 443?

I complex message format

I presence of corrupted data

I presence of other protocols (HTTP, SSH...)

I more subtle errors may arise

What should you expect from a server when you only propose the
AES128-SHA and DHE-RSA-AES128-SHA ciphersuites?

A AES128-SHA

B DHE-RSA-AES128-SHA

C an alert

D something else (RC4 MD5)

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 4 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Analysing SSL/TLS data

How to analyse the 180 GB of data collected on port 443?

I complex message format

I presence of corrupted data

I presence of other protocols (HTTP, SSH...)

I more subtle errors may arise

What should you expect from a server when you only propose the
AES128-SHA and DHE-RSA-AES128-SHA ciphersuites?

A AES128-SHA

B DHE-RSA-AES128-SHA

C an alert

D something else (RC4 MD5)

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 4 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Analysing SSL/TLS data

How to analyse the 180 GB of data collected on port 443?

I complex message format

I presence of corrupted data

I presence of other protocols (HTTP, SSH...)

I more subtle errors may arise

What should you expect from a server when you only propose the
AES128-SHA and DHE-RSA-AES128-SHA ciphersuites?

A AES128-SHA

B DHE-RSA-AES128-SHA

C an alert

D something else (RC4 MD5)

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 4 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Analysing SSL/TLS data

How to analyse the 180 GB of data collected on port 443?

I complex message format

I presence of corrupted data

I presence of other protocols (HTTP, SSH...)

I more subtle errors may arise

What should you expect from a server when you only propose the
AES128-SHA and DHE-RSA-AES128-SHA ciphersuites?

A AES128-SHA

B DHE-RSA-AES128-SHA

C an alert

D something else (RC4 MD5)

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 4 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Analysing SSL/TLS data

How to analyse the 180 GB of data collected on port 443?

I complex message format

I presence of corrupted data

I presence of other protocols (HTTP, SSH...)

I more subtle errors may arise

What should you expect from a server when you only propose the
AES128-SHA and DHE-RSA-AES128-SHA ciphersuites?

A AES128-SHA

B DHE-RSA-AES128-SHA

C an alert

D something else (RC4 MD5)

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 4 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Analysing SSL/TLS data

How to analyse the 180 GB of data collected on port 443?

I complex message format

I presence of corrupted data

I presence of other protocols (HTTP, SSH...)

I more subtle errors may arise

What should you expect from a server when you only propose the
AES128-SHA and DHE-RSA-AES128-SHA ciphersuites?

A AES128-SHA

B DHE-RSA-AES128-SHA

C an alert

D something else (RC4 MD5)

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 4 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Existing tools

To reliably analyse the data, we needed relatively fast and reliable tools

I they should handle gracefully corrupted (or even malicious) input

Standard TLS stacks did not meet our needs, since they can be

I fragile

I incomplete

I silently laxist

Among the existing tools to write parsers, we found nothing suitable:

I Scapy/Hachoir, Python tools

I existing Haskell/OCaml libraries

I binpac, a C preprocessor from the Bro project

I Nail

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 5 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Existing tools

To reliably analyse the data, we needed relatively fast and reliable tools

I they should handle gracefully corrupted (or even malicious) input

Standard TLS stacks did not meet our needs, since they can be

I fragile

I incomplete

I silently laxist

Among the existing tools to write parsers, we found nothing suitable:

I Scapy/Hachoir, Python tools

I existing Haskell/OCaml libraries

I binpac, a C preprocessor from the Bro project

I Nail

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 5 / 22

https://github.com/ANSSI-FR/parsifal


Motivation

Homemade tools

To handle the SSL/TLS data, several parsers were developed, using
different languages

I Python: quick to write, but too slow at runtime

I C++: flexible, fast at runtime, but verbose and hard to debug

I OCaml: robust, efficient, but still too much code

I OCaml with an integrated preprocessor: everything looks fine

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 6 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Agenda

Motivation: studying SSL/TLS answers

Parsifal

Results

Lessons learned

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 7 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Marketting

I Parsifal lets you describe constructions

I The corresponding parsing (and dumping) functions are generated

I For example, a simple DNS client can fit in 200 locs

I With Parsifal, parsers can be written with concise code

I The resulting programs are fast

I They are also robust

I Parsers can be developed incrementally

I Possible usages of Parsifal
I robust analysis tools
I basic blocks for sanitisation tools
I secure protocol implementations

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 8 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Marketting

I Parsifal lets you describe constructions

I The corresponding parsing (and dumping) functions are generated

I For example, a simple DNS client can fit in 200 locs

I With Parsifal, parsers can be written with concise code

I The resulting programs are fast

I They are also robust

I Parsers can be developed incrementally

I Possible usages of Parsifal
I robust analysis tools
I basic blocks for sanitisation tools
I secure protocol implementations

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 8 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Marketting

I Parsifal lets you describe constructions

I The corresponding parsing (and dumping) functions are generated

I For example, a simple DNS client can fit in 200 locs

I With Parsifal, parsers can be written with concise code

I The resulting programs are fast

I They are also robust

I Parsers can be developed incrementally

I Possible usages of Parsifal
I robust analysis tools
I basic blocks for sanitisation tools
I secure protocol implementations

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 8 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

First example: a trivial PNG parsr

struct png file = {
png magic : magic("\x89\x50\x4e\x47\x0d\x0a\x1a\x0a");
png content : binstring;

}

let input = input of filename "image.png" in

let png = parse png file input in

print value (value of png file png)

Program output:
value {
png magic: 89504e470d0a1a0a (8 bytes)

png content: 0000000d49484... (264 bytes)

}

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 9 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

First example: a trivial PNG parsr

struct png file = {
png magic : magic("\x89\x50\x4e\x47\x0d\x0a\x1a\x0a");
png content : binstring;

}

let input = input of filename "image.png" in

let png = parse png file input in

print value (value of png file png)

Program output:
value {
png magic: 89504e470d0a1a0a (8 bytes)

png content: 0000000d49484... (264 bytes)

}

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 9 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

First example: a trivial PNG parsr

struct png file = {
png magic : magic("\x89\x50\x4e\x47\x0d\x0a\x1a\x0a");
png content : binstring;

}

let input = input of filename "image.png" in

let png = parse png file input in

print value (value of png file png)

Program output:
value {
png magic: 89504e470d0a1a0a (8 bytes)

png content: 0000000d49484... (264 bytes)

}

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 9 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Chunk handling (1/2)

struct png file = {
png magic : magic("\x89\x50\x4e\x47\x0d\x0a\x1a\x0a");
png content : list of chunk;

}

struct chunk = {
chunk size : uint32;

chunk type : string(4);

data : binstring(chunk size);

crc : uint32;

}

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 10 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Chunk handling (1/2)

struct png file = {
png magic : magic("\x89\x50\x4e\x47\x0d\x0a\x1a\x0a");
png content : list of chunk;

}

struct chunk = {
chunk size : uint32;

chunk type : string(4);

data : binstring(chunk size);

crc : uint32;

}

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 10 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Chunk handling (2/2)

Sortie du programme:
value {
png magic: 89504e470d0a1a0a (8 bytes)

chunks {
chunks[0] {
chunk size: 13 (0x0000000d)

chunk type: "IHDR" (4 bytes)

data: 00000014000000160403000000 (13 bytes)

crc: 846176565 (0x326fa135)

}
... 4 other chunks ...

}
}

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 11 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Chunk enriching: IHDR
struct chunk = {
chunk size : uint32;

chunk type : string(4);

data : container(chunk size) of chunk content;

crc : uint32;

}

union chunk content [enrich] (UnparsedChunkContent) =

| "IHDR" → ImageHeader of image header

struct image header = {
width: uint32; height : uint32;

bit depth : uint8;

color type : color type;

...

}

enum color type (8, UnknownVal UnknownColorType) =

| 0 → Grayscale

| 2 → Truecolor

...

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 12 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Chunk enriching: IHDR
struct chunk = {
chunk size : uint32;

chunk type : string(4);

data : container(chunk size) of chunk content;

crc : uint32;

}

union chunk content [enrich] (UnparsedChunkContent) =

| "IHDR" → ImageHeader of image header

struct image header = {
width: uint32; height : uint32;

bit depth : uint8;

color type : color type;

...

}

enum color type (8, UnknownVal UnknownColorType) =

| 0 → Grayscale

| 2 → Truecolor

...

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 12 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Chunk enriching: IHDR
struct chunk = {
chunk size : uint32;

chunk type : string(4);

data : container(chunk size) of chunk content;

crc : uint32;

}

union chunk content [enrich] (UnparsedChunkContent) =

| "IHDR" → ImageHeader of image header

struct image header = {
width: uint32; height : uint32;

bit depth : uint8;

color type : color type;

...

}

enum color type (8, UnknownVal UnknownColorType) =

| 0 → Grayscale

| 2 → Truecolor

...

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 12 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Chunk enriching: IHDR
struct chunk = {
chunk size : uint32;

chunk type : string(4);

data : container(chunk size) of chunk content;

crc : uint32;

}

union chunk content [enrich] (UnparsedChunkContent) =

| "IHDR" → ImageHeader of image header

struct image header = {
width: uint32; height : uint32;

bit depth : uint8;

color type : color type;

...

}

enum color type (8, UnknownVal UnknownColorType) =

| 0 → Grayscale

| 2 → Truecolor

...

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 12 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Features
Beyond enum, struct and union, Parsifal also has

I asn1 * keywords to descrive ASN.1 structures (DER format)

I bit fields
I a notion of containers to automate:

I compression (ztext : zlib container of string;)
I encoding (e.g.base64)
I cryptographic transformations (e.g. pkcs1 container)
I additional constraints

I a toolbox of predefined PTypes

The produced tools are robust against invalid inputs, by construction

I static typing

I strict interpretation

Once we had this hammer, every binary format really looked like a nail

But Parsifal always allows to mix manually written types

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 13 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Features
Beyond enum, struct and union, Parsifal also has

I asn1 * keywords to descrive ASN.1 structures (DER format)

I bit fields
I a notion of containers to automate:

I compression (ztext : zlib container of string;)
I encoding (e.g.base64)
I cryptographic transformations (e.g. pkcs1 container)
I additional constraints

I a toolbox of predefined PTypes

The produced tools are robust against invalid inputs, by construction

I static typing

I strict interpretation

Once we had this hammer, every binary format really looked like a nail

But Parsifal always allows to mix manually written types

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 13 / 22

https://github.com/ANSSI-FR/parsifal


Parsifal

Features
Beyond enum, struct and union, Parsifal also has

I asn1 * keywords to descrive ASN.1 structures (DER format)

I bit fields
I a notion of containers to automate:

I compression (ztext : zlib container of string;)
I encoding (e.g.base64)
I cryptographic transformations (e.g. pkcs1 container)
I additional constraints

I a toolbox of predefined PTypes

The produced tools are robust against invalid inputs, by construction

I static typing

I strict interpretation

Once we had this hammer, every binary format really looked like a nail

But Parsifal always allows to mix manually written types
O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 13 / 22

https://github.com/ANSSI-FR/parsifal


Results

Agenda

Motivation: studying SSL/TLS answers

Parsifal

Results

Lessons learned

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 14 / 22

https://github.com/ANSSI-FR/parsifal


Results

Some figures

Three home-made TLS analysers (certificate extraction)

C++ OCaml Parsifal

LOC 8,500 4,000 1,000
Processing time 100 s 40 s 8 s

Three tools to analyse BGP messages:

libbgpdump OCaml Parsifal

LOC 4,000 1,200 550
Processing time 23 s 180 s 35 s

Robustness NO yes yes

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 15 / 22

https://github.com/ANSSI-FR/parsifal


Results

Other formats

Here are a list of formats (at least partially) implemented

I DNS

I NTP

I PNG

I OpenPGP

I Kerberos

I PE

I UEFI Firmware

I DVI

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 16 / 22

https://github.com/ANSSI-FR/parsifal


Lessons learned

Agenda

Motivation: studying SSL/TLS answers

Parsifal

Results

Lessons learned

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 17 / 22

https://github.com/ANSSI-FR/parsifal


Lessons learned

On formats

There is something as a bad format:

I PE and EXIF include non-linear structures

I DVI force you to know the whole spec to parse a file
I integers may come in very different flavours

I at least 4 in ASN.1 DER
I do you know the TAR way to represent them?

On the contrary, we like

I Tag-Length-Value which allows extensibility

I canonical representations

I reusable elements

I simple, linear parsing

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 18 / 22

https://github.com/ANSSI-FR/parsifal


Lessons learned

On formats

There is something as a bad format:

I PE and EXIF include non-linear structures

I DVI force you to know the whole spec to parse a file
I integers may come in very different flavours

I at least 4 in ASN.1 DER
I do you know the TAR way to represent them?

On the contrary, we like

I Tag-Length-Value which allows extensibility

I canonical representations

I reusable elements

I simple, linear parsing

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 18 / 22

https://github.com/ANSSI-FR/parsifal


Lessons learned

On formats

There is something as a bad format:

I PE and EXIF include non-linear structures

I DVI force you to know the whole spec to parse a file
I integers may come in very different flavours

I at least 4 in ASN.1 DER
I do you know the TAR way to represent them?

On the contrary, we like

I Tag-Length-Value which allows extensibility

I canonical representations

I reusable elements

I simple, linear parsing

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 18 / 22

https://github.com/ANSSI-FR/parsifal


Lessons learned

On the language

I OCaml proved to be a robust language

I The presence of a GC is often seen as a major advantage

I (unless you want to handle some memory cells)

I For me, the real pro is the exhaustive pattern matching

I Also, strong typing keep you on track

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 19 / 22

https://github.com/ANSSI-FR/parsifal


Lessons learned

On the process

I Implementing parsers gives you real insight in formats and protocols

I Parsifal automates most of the mind-numbing repetetive tasks

I Parsifal allows for incremental development

I Yet our methodology aims at checking the validity of values with
robust tools, not so much at fuzzing

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 20 / 22

https://github.com/ANSSI-FR/parsifal


Lessons learned

On the process

I Implementing parsers gives you real insight in formats and protocols

I Parsifal automates most of the mind-numbing repetetive tasks

I Parsifal allows for incremental development

I Yet our methodology aims at checking the validity of values with
robust tools, not so much at fuzzing

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 20 / 22

https://github.com/ANSSI-FR/parsifal


Conclusion

I Three years of writing parsers led us to Parsifal

I Our hammer looks more and more like a Swiss knife

I Until now, we mainly used it to understand formats and analyse data

I Sanitization tools have been prototyped (certificates, PNG)

I Next step: more real-world use cases

I Since June 2013, the code is available on GitHub

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 21 / 22

https://github.com/ANSSI-FR/parsifal


Questions?

Thank you for your attention

https://github.com/ANSSI-FR/parsifal

olivier.levillain@ssi.gouv.fr

O. Levillain (ANSSI) https://github.com/ANSSI-FR/parsifal May 18th 2014 22 / 22

https://github.com/ANSSI-FR/parsifal
https://github.com/ANSSI-FR/parsifal

	Motivation: studying SSL/TLS answers
	Parsifal
	Results
	Lessons learned

