
Some thoughts on SSL/TLS from a (nearly) 6-year
PhD student

Olivier Levillain

ANSSI

2015-11-23

O. Levillain (ANSSI) SSL/TLS 2015-11-23 1 / 40



Who am I?
Olivier Levillain (@pictyeye)

I M2 internship in cryptography: study of a hash function
I member of the systems lab at ANSSI (2007-2012)
I head of the network lab at ANSSI (2012-2015)
I head of the training center (CFSSI) (2015-)

Research
I part of the low-level x86 security work (SMM/ACPI)
I PhD student working on SSL/TLS since 2011
I Participation to languages studies since 2007
I some work on binary parsers

Teaching
I cryptography: hash function and cryptanalysis
I systems module for the CFSSI
I courses on SSL/TLS, and more recently on secure development

O. Levillain (ANSSI) SSL/TLS 2015-11-23 2 / 40



ANSSI
ANSSI (French Network and Information Security Agency) has InfoSec
(and no Intelligence) missions:

I detect and early react to cyber attacks
I prevent threats by supporting the development of trusted products

and services
I provide reliable advice and support
I communicate on information security threats and the related means

of protection

These missions concern:
I governmental entities
I companies
I the general public

O. Levillain (ANSSI) SSL/TLS 2015-11-23 3 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



TLS: a quick tour

SSL/TLS: an essential building block of Internet

I https:// invented by Netscape in 1995
I the beginning of the e-commerce

I Massive usage of SSL/TLS today
I HTTPS, well beyond e-commerce websites
I A way to secure other protocols (SMTP, IMAP, LDAP...)
I SSL VPN
I EAP TLS

I SSL (Secure Sockets Layer) or TLS (Transport Layer Security) ?
I SSLv2 (1995) and v3 (1996) designed by Netscape
I TLS 1.0 (2001) a.k.a. SSLv3.1, handled by IETF
I New revisions since: 1.1 (2006), 1.2 (2008) and 1.3 (2016?)

O. Levillain (ANSSI) SSL/TLS 2015-11-23 5 / 40



TLS: a quick tour

SSL/TLS: an essential building block of Internet

I https:// invented by Netscape in 1995
I the beginning of the e-commerce

I Massive usage of SSL/TLS today
I HTTPS, well beyond e-commerce websites
I A way to secure other protocols (SMTP, IMAP, LDAP...)
I SSL VPN
I EAP TLS

I SSL (Secure Sockets Layer) or TLS (Transport Layer Security) ?
I SSLv2 (1995) and v3 (1996) designed by Netscape
I TLS 1.0 (2001) a.k.a. SSLv3.1, handled by IETF
I New revisions since: 1.1 (2006), 1.2 (2008) and 1.3 (2016?)

O. Levillain (ANSSI) SSL/TLS 2015-11-23 5 / 40



TLS: a quick tour

Fonctionnement du protocole

Client Server

ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application data

O. Levillain (ANSSI) SSL/TLS 2015-11-23 6 / 40



TLS: a quick tour

Fonctionnement du protocole

Client Server
ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application data

O. Levillain (ANSSI) SSL/TLS 2015-11-23 6 / 40



TLS: a quick tour

Fonctionnement du protocole

Client Server
ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application data

O. Levillain (ANSSI) SSL/TLS 2015-11-23 6 / 40



TLS: a quick tour

Fonctionnement du protocole

Client Server
ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application data

O. Levillain (ANSSI) SSL/TLS 2015-11-23 6 / 40



TLS: a quick tour

Fonctionnement du protocole

Client Server
ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application data

O. Levillain (ANSSI) SSL/TLS 2015-11-23 6 / 40



TLS: a quick tour

Fonctionnement du protocole

Client Server
ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application data

O. Levillain (ANSSI) SSL/TLS 2015-11-23 6 / 40



TLS: a quick tour

Fonctionnement du protocole

Client Server
ClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCipherSpec

Finished

Application data

O. Levillain (ANSSI) SSL/TLS 2015-11-23 6 / 40



TLS: a quick tour

Some figures about SSL/TLS

I More than 50 RFC
I 5 protocol versions for the moment
I More than 300 ciphersuites
I More than 20 extensions
I Some interesting features

I compression
I renegotiation
I session resumption (2 methods)

I A dozen well known implementations
I How many home-made implementations ?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 7 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (1/3)

What can a TLS server answer to a client proposing the following
ciphersuites: AES128-SHA and ECDH-ECDSA-AES128-SHA?

A AES128-SHA

B ECDH-ECDSA-AES128-SHA

C an alert
D something else (RC4_MD5)

The explanation is a little sad:
I a ciphersuite is a 16-bit integer
I until (relatively) recently, all ciphersuites were of the form 00 XX
I so why bother with the most significant byte?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 8 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (1/3)

What can a TLS server answer to a client proposing the following
ciphersuites: AES128-SHA and ECDH-ECDSA-AES128-SHA?
A AES128-SHA

B ECDH-ECDSA-AES128-SHA

C an alert
D something else (RC4_MD5)

The explanation is a little sad:
I a ciphersuite is a 16-bit integer
I until (relatively) recently, all ciphersuites were of the form 00 XX
I so why bother with the most significant byte?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 8 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (1/3)

What can a TLS server answer to a client proposing the following
ciphersuites: AES128-SHA and ECDH-ECDSA-AES128-SHA?
A AES128-SHA

B ECDH-ECDSA-AES128-SHA

C an alert
D something else (RC4_MD5)

The explanation is a little sad:
I a ciphersuite is a 16-bit integer
I until (relatively) recently, all ciphersuites were of the form 00 XX
I so why bother with the most significant byte?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 8 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (1/3)

What can a TLS server answer to a client proposing the following
ciphersuites: AES128-SHA and ECDH-ECDSA-AES128-SHA?
A AES128-SHA

B ECDH-ECDSA-AES128-SHA

C an alert

D something else (RC4_MD5)

The explanation is a little sad:
I a ciphersuite is a 16-bit integer
I until (relatively) recently, all ciphersuites were of the form 00 XX
I so why bother with the most significant byte?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 8 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (1/3)

What can a TLS server answer to a client proposing the following
ciphersuites: AES128-SHA and ECDH-ECDSA-AES128-SHA?
A AES128-SHA

B ECDH-ECDSA-AES128-SHA

C an alert
D something else (RC4_MD5)

The explanation is a little sad:
I a ciphersuite is a 16-bit integer
I until (relatively) recently, all ciphersuites were of the form 00 XX
I so why bother with the most significant byte?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 8 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (1/3)

What can a TLS server answer to a client proposing the following
ciphersuites: AES128-SHA and ECDH-ECDSA-AES128-SHA?
A AES128-SHA

B ECDH-ECDSA-AES128-SHA

C an alert
D something else (RC4_MD5)

The explanation is a little sad:
I a ciphersuite is a 16-bit integer
I until (relatively) recently, all ciphersuites were of the form 00 XX
I so why bother with the most significant byte?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 8 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (2/3)

I In 2010, Google proposed some extensions, False Start and Snap Start
I After several months, the Internet seemed intolerant to Snap Start
I The proposal was withdrawn in 2012

I One year later, the same problem reappears in another context
I On the WG mailing list (tls@ietf.org), someone speaks up and

explains the issue: the ClientHello is too big...

O. Levillain (ANSSI) SSL/TLS 2015-11-23 9 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (2/3)

I In 2010, Google proposed some extensions, False Start and Snap Start
I After several months, the Internet seemed intolerant to Snap Start
I The proposal was withdrawn in 2012

I One year later, the same problem reappears in another context
I On the WG mailing list (tls@ietf.org), someone speaks up and

explains the issue: the ClientHello is too big...

O. Levillain (ANSSI) SSL/TLS 2015-11-23 9 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (3/3)
Here is the beginning of a 258-byte long ClientHello

16 03 01 01 02

TLS Type Version Length
HS TLS 1.0 258

SSLv2 Length Pad. Type
5635 ... CH

A TLS ClientHello with a size between 256 and 511 can be seen as an
SSLv2 ClientHello!

In the end, all is well
I Google’s new proposal: an extension to pad ClientHello...

O. Levillain (ANSSI) SSL/TLS 2015-11-23 10 / 40



TLS: a quick tour

Home-made SSL/TLS stacks (3/3)
Here is the beginning of a 258-byte long ClientHello

16 03 01 01 02

TLS Type Version Length
HS TLS 1.0 258

SSLv2 Length Pad. Type
5635 ... CH

A TLS ClientHello with a size between 256 and 511 can be seen as an
SSLv2 ClientHello!

In the end, all is well
I Google’s new proposal: an extension to pad ClientHello...

O. Levillain (ANSSI) SSL/TLS 2015-11-23 10 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities

I 1995: down-negotiation in SSLv2
I 1998: Bleichenbacher attack on PKCS#1 v1.5
I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)
I 2008: certificate validation bypass in OpenSSL
I 2009: MD5 collision on real certificates
I 2009: renegotiation attack
I 2009: confusion in handling null characters in certificates
I 2011: BEAST (implicit IV in CBC mode)
I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)
I 2012: Mining your Ps and Qs (bad random used in RSA key generation)
I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4
I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)
I 2014: Triple Handshake (attack mixing renegotiation and session resumption)
I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities
I 1995: down-negotiation in SSLv2

I 1998: Bleichenbacher attack on PKCS#1 v1.5
I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)
I 2008: certificate validation bypass in OpenSSL
I 2009: MD5 collision on real certificates

I 2009: renegotiation attack

I 2009: confusion in handling null characters in certificates
I 2011: BEAST (implicit IV in CBC mode)
I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)
I 2012: Mining your Ps and Qs (bad random used in RSA key generation)
I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4
I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)
I 2014: Triple Handshake (attack mixing renegotiation and session resumption)
I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities
I 1995: down-negotiation in SSLv2

I 1998: Bleichenbacher attack on PKCS#1 v1.5
I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)
I 2008: certificate validation bypass in OpenSSL
I 2009: MD5 collision on real certificates

I 2009: renegotiation attack

I 2009: confusion in handling null characters in certificates
I 2011: BEAST (implicit IV in CBC mode)
I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)
I 2012: Mining your Ps and Qs (bad random used in RSA key generation)
I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4
I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)

I 2014: Triple Handshake (attack mixing renegotiation and session resumption)

I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities
I 1995: down-negotiation in SSLv2
I 1998: Bleichenbacher attack on PKCS#1 v1.5

I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)
I 2008: certificate validation bypass in OpenSSL

I 2009: MD5 collision on real certificates
I 2009: renegotiation attack

I 2009: confusion in handling null characters in certificates

I 2011: BEAST (implicit IV in CBC mode)

I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)
I 2012: Mining your Ps and Qs (bad random used in RSA key generation)

I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4

I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)

I 2014: Triple Handshake (attack mixing renegotiation and session resumption)

I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities
I 1995: down-negotiation in SSLv2
I 1998: Bleichenbacher attack on PKCS#1 v1.5
I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)

I 2008: certificate validation bypass in OpenSSL

I 2009: MD5 collision on real certificates
I 2009: renegotiation attack
I 2009: confusion in handling null characters in certificates
I 2011: BEAST (implicit IV in CBC mode)

I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)
I 2012: Mining your Ps and Qs (bad random used in RSA key generation)

I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4
I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)
I 2014: Triple Handshake (attack mixing renegotiation and session resumption)
I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities
I 1995: down-negotiation in SSLv2
I 1998: Bleichenbacher attack on PKCS#1 v1.5
I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)
I 2008: certificate validation bypass in OpenSSL
I 2009: MD5 collision on real certificates
I 2009: renegotiation attack
I 2009: confusion in handling null characters in certificates
I 2011: BEAST (implicit IV in CBC mode)

I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)
I 2012: Mining your Ps and Qs (bad random used in RSA key generation)

I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4
I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)
I 2014: Triple Handshake (attack mixing renegotiation and session resumption)
I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities
I 1995: down-negotiation in SSLv2
I 1998: Bleichenbacher attack on PKCS#1 v1.5
I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)
I 2008: certificate validation bypass in OpenSSL
I 2009: MD5 collision on real certificates
I 2009: renegotiation attack
I 2009: confusion in handling null characters in certificates
I 2011: BEAST (implicit IV in CBC mode)
I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)

I 2012: Mining your Ps and Qs (bad random used in RSA key generation)

I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4
I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)
I 2014: Triple Handshake (attack mixing renegotiation and session resumption)
I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



Two decades of SSL/TLS vulnerabilities

A brief history of SSL/TLS vulnerabilities
I 1995: down-negotiation in SSLv2
I 1998: Bleichenbacher attack on PKCS#1 v1.5
I 2002: wrong interpretation of X.509 Basic Constraints extension (IE)
I 2008: certificate validation bypass in OpenSSL
I 2009: MD5 collision on real certificates
I 2009: renegotiation attack
I 2009: confusion in handling null characters in certificates
I 2011: BEAST (implicit IV in CBC mode)
I 2011: wrong interpretation of X.509 Basic Constraints extension (iOS)
I 2012: Mining your Ps and Qs (bad random used in RSA key generation)
I 2013: Lucky 13 (CBC padding oracle) + statistical biases in RC4
I 2014: Apple’s goto fail
I 2014: certificate validation bypass in GnuTLS (the other goto fail)
I 2014: Triple Handshake (attack mixing renegotiation and session resumption)
I 2014: Heartbleed
I 2014: EarlyCCS
I 2015: FREAK and LogJam

O. Levillain (ANSSI) SSL/TLS 2015-11-23 12 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

SSL/TLS design flaws in the first phase

The first step in an SSL/TLS connection is to authenticate the server and
share a common secret

Some examples of what could go wrong

I SSLv2 down-negotiation: only the random values exchanged were
authenticated

I Renegotiation / Triple Handshake: different sessions/epochs were not
bound in a secure manner

O. Levillain (ANSSI) SSL/TLS 2015-11-23 14 / 40



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

SSL/TLS design flaws in the first phase

The first step in an SSL/TLS connection is to authenticate the server and
share a common secret

Some examples of what could go wrong
I SSLv2 down-negotiation: only the random values exchanged were

authenticated

I Renegotiation / Triple Handshake: different sessions/epochs were not
bound in a secure manner

O. Levillain (ANSSI) SSL/TLS 2015-11-23 14 / 40



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

SSL/TLS design flaws in the first phase

The first step in an SSL/TLS connection is to authenticate the server and
share a common secret

Some examples of what could go wrong
I SSLv2 down-negotiation: only the random values exchanged were

authenticated

I Renegotiation / Triple Handshake: different sessions/epochs were not
bound in a secure manner

O. Levillain (ANSSI) SSL/TLS 2015-11-23 14 / 40



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

About master secret and key derivation (1/2)

The master secret is derived from
I the result of the key exchange algorithm
I random values sent in plaintext

Integrity is only guaranteed afterwards when Finished messages are
exchanged

Several attacks rely on this limited coverage in the derivation
I theoretical cross-protocol attacks were presented in 1999
I (almost) practical instanciations were published in 2012
I Triple Handshake used this in 2014
I SMACK/FREAK 2015
I LogJam in 2015

O. Levillain (ANSSI) SSL/TLS 2015-11-23 15 / 40



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

About master secret and key derivation (1/2)

The master secret is derived from
I the result of the key exchange algorithm
I random values sent in plaintext

Integrity is only guaranteed afterwards when Finished messages are
exchanged

Several attacks rely on this limited coverage in the derivation
I theoretical cross-protocol attacks were presented in 1999
I (almost) practical instanciations were published in 2012
I Triple Handshake used this in 2014
I SMACK/FREAK 2015
I LogJam in 2015

O. Levillain (ANSSI) SSL/TLS 2015-11-23 15 / 40



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

About master secret and key derivation (2/2)
Fix proposal

I session-hash extension: the derivation should hash all the previously
exchanged messages

I RFC 7627 for TLS 1.{0,1,2}
I native feature of TLS 1.3

However, this is not enough, as LogJam proved it
I the DH group is chosen by the server using unauthenticated

information (possibly a weak one such as 512-bit DH group)
I the chosen group is signed along with the exchanged random values
I an attacker can break the discrete logarithm and reuse this message

to control the communication

The real fix: sign all the previously exchanged messages, not only the
random values

O. Levillain (ANSSI) SSL/TLS 2015-11-23 16 / 40



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

About master secret and key derivation (2/2)
Fix proposal

I session-hash extension: the derivation should hash all the previously
exchanged messages

I RFC 7627 for TLS 1.{0,1,2}
I native feature of TLS 1.3

However, this is not enough, as LogJam proved it
I the DH group is chosen by the server using unauthenticated

information (possibly a weak one such as 512-bit DH group)
I the chosen group is signed along with the exchanged random values
I an attacker can break the discrete logarithm and reuse this message

to control the communication

The real fix: sign all the previously exchanged messages, not only the
random values

O. Levillain (ANSSI) SSL/TLS 2015-11-23 16 / 40



Two decades of SSL/TLS vulnerabilities Authentication and key exchange

About master secret and key derivation (2/2)
Fix proposal

I session-hash extension: the derivation should hash all the previously
exchanged messages

I RFC 7627 for TLS 1.{0,1,2}
I native feature of TLS 1.3

However, this is not enough, as LogJam proved it
I the DH group is chosen by the server using unauthenticated

information (possibly a weak one such as 512-bit DH group)
I the chosen group is signed along with the exchanged random values
I an attacker can break the discrete logarithm and reuse this message

to control the communication

The real fix: sign all the previously exchanged messages, not only the
random values

O. Levillain (ANSSI) SSL/TLS 2015-11-23 16 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Two decades of SSL/TLS vulnerabilities Symmetric crypto vulnerabilites

Attacks against the Record Protocol

Since 2011, a lot of practical attacks targetting the Record Protocol
I BEAST: against CBC with implicit IV (versions before TLS 1.1)
I CRIME: refined with TIME and BREACH, using TLS (or HTTP)

compression as a side-channel
I Lucky 13: padding oracle against CBC
I RC4 biases: statistical biases allowing for plaintext recovery
I POODLE: more efficient padding oracle against SSLv3

All these have similarities: they target HTTP authenticated cookies
I indeed, cookies are repeated across TLS sessions, making some

attacks possible

O. Levillain (ANSSI) SSL/TLS 2015-11-23 18 / 40



Two decades of SSL/TLS vulnerabilities Symmetric crypto vulnerabilites

Attacks against the Record Protocol

Since 2011, a lot of practical attacks targetting the Record Protocol
I BEAST: against CBC with implicit IV (versions before TLS 1.1)
I CRIME: refined with TIME and BREACH, using TLS (or HTTP)

compression as a side-channel
I Lucky 13: padding oracle against CBC
I RC4 biases: statistical biases allowing for plaintext recovery
I POODLE: more efficient padding oracle against SSLv3

All these have similarities: they target HTTP authenticated cookies
I indeed, cookies are repeated across TLS sessions, making some

attacks possible

O. Levillain (ANSSI) SSL/TLS 2015-11-23 18 / 40



Two decades of SSL/TLS vulnerabilities Symmetric crypto vulnerabilites

Focus on RC4
I 1987: RC4, a proprietary streamcipher designed by Rivest
I 1994: RC4 leaks under the name ARCFOUR
I 1995-2000: biases related to the first bytes of the keystream
I 2001: WEP (which uses correlated keys) is broken by Flührer,

Mantin, and Shamir
I 2013: exploitable biases are discovered in the TLS use case
I 2014: more, better, attacks

O. Levillain (ANSSI) SSL/TLS 2015-11-23 19 / 40



Two decades of SSL/TLS vulnerabilities Symmetric crypto vulnerabilites

Some thoughts about CBC mode

https://www.openssl.org/~bodo/tls-cbc.txt

Bodo Möller

(2004-05-20)

I Beware of padding oracles with CBC mode in TLS
I CBC mode with implicit IV may be subject to attacks
I With SSLv3, the padding is not well specified, which aggravates

padding oracles
I ... he was describing Lucky 13, BEAST and POODLE

O. Levillain (ANSSI) SSL/TLS 2015-11-23 20 / 40

https://www.openssl.org/~bodo/tls-cbc.txt


Two decades of SSL/TLS vulnerabilities Symmetric crypto vulnerabilites

Some thoughts about CBC mode

https://www.openssl.org/~bodo/tls-cbc.txt

Bodo Möller

(2004-05-20)

I Beware of padding oracles with CBC mode in TLS
I CBC mode with implicit IV may be subject to attacks
I With SSLv3, the padding is not well specified, which aggravates

padding oracles

I ... he was describing Lucky 13, BEAST and POODLE

O. Levillain (ANSSI) SSL/TLS 2015-11-23 20 / 40

https://www.openssl.org/~bodo/tls-cbc.txt


Two decades of SSL/TLS vulnerabilities Symmetric crypto vulnerabilites

Some thoughts about CBC mode

https://www.openssl.org/~bodo/tls-cbc.txt

Bodo Möller (2004-05-20)

I Beware of padding oracles with CBC mode in TLS
I CBC mode with implicit IV may be subject to attacks
I With SSLv3, the padding is not well specified, which aggravates

padding oracles
I ... he was describing Lucky 13, BEAST and POODLE

O. Levillain (ANSSI) SSL/TLS 2015-11-23 20 / 40

https://www.openssl.org/~bodo/tls-cbc.txt


TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Two decades of SSL/TLS vulnerabilities Implementation bugs

2014: terrible year for TLS
In 2014, all major TLS stacks were affected by a critical vulnerability

I February : goto fail in Apple
I February : goto fail in GnuTLS
I April : Heartbleed in OpenSSL
I June : Early CCS in OpenSSL
I September : Universal signature forgery (Berserk?) in NSS (Mozilla)
I September : Universal signature forgery (Berserk?) in CyaSSL
I September : Universal signature forgery (Berserk?) in PolarSSL (now

mbedTLS)
I November : remote code execution in SChannel (MS)

Quizz
I What also happened on Heartbleed’s day (April 8th, 2014)?
I What also happened on Berserk’s day (September 24th, 2014)?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 22 / 40



Two decades of SSL/TLS vulnerabilities Implementation bugs

2014: terrible year for TLS
In 2014, all major TLS stacks were affected by a critical vulnerability

I February : goto fail in Apple
I February : goto fail in GnuTLS
I April : Heartbleed in OpenSSL
I June : Early CCS in OpenSSL
I September : Universal signature forgery (Berserk?) in NSS (Mozilla)
I September : Universal signature forgery (Berserk?) in CyaSSL
I September : Universal signature forgery (Berserk?) in PolarSSL (now

mbedTLS)
I November : remote code execution in SChannel (MS)

Quizz
I What also happened on Heartbleed’s day (April 8th, 2014)?
I What also happened on Berserk’s day (September 24th, 2014)?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 22 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Implementation bugs Classical errors

A typical buffer overflows: Heartbleed

Source: http://xkcd.com/1354

+ /* Read type and payload length first */
+ if (1 + 2 + 16 > s->s3->rrec.length)
+ return 0; /* silently discard */

O. Levillain (ANSSI) SSL/TLS 2015-11-23 25 / 40

http://xkcd.com/1354


Implementation bugs Classical errors

Another silly buffer overflow: WinShock

I Client authentication using Elliptic Curve certificates rely on two more
messages

I The Certificate message, containing the certificate chain
I it contains the used curve
I in particular, it indicates the length of the coordinates L

I The CertificateVerify, containing a signature covering previous
messages

I the signature contains coordinates, with a length l
I what if SChannel copied l bytes in a L-byte buffer with no checks...

But wait?! Nearly noone uses TLS client authentication with certificates?

Teaser: all vulnerable server stacks were nevertheless exploitable

O. Levillain (ANSSI) SSL/TLS 2015-11-23 26 / 40



Implementation bugs Classical errors

Another silly buffer overflow: WinShock

I Client authentication using Elliptic Curve certificates rely on two more
messages

I The Certificate message, containing the certificate chain
I it contains the used curve
I in particular, it indicates the length of the coordinates L

I The CertificateVerify, containing a signature covering previous
messages

I the signature contains coordinates, with a length l
I what if SChannel copied l bytes in a L-byte buffer with no checks...

But wait?! Nearly noone uses TLS client authentication with certificates?

Teaser: all vulnerable server stacks were nevertheless exploitable

O. Levillain (ANSSI) SSL/TLS 2015-11-23 26 / 40



Implementation bugs Classical errors

Another silly buffer overflow: WinShock

I Client authentication using Elliptic Curve certificates rely on two more
messages

I The Certificate message, containing the certificate chain
I it contains the used curve
I in particular, it indicates the length of the coordinates L

I The CertificateVerify, containing a signature covering previous
messages

I the signature contains coordinates, with a length l
I what if SChannel copied l bytes in a L-byte buffer with no checks...

But wait?! Nearly noone uses TLS client authentication with certificates?

Teaser: all vulnerable server stacks were nevertheless exploitable

O. Levillain (ANSSI) SSL/TLS 2015-11-23 26 / 40



Implementation bugs Classical errors

Apple’s goto fail

/* Extract from Apple’s sslKeyExchange.c */
if ((err=SSLHashSHA1.update(&hashCtx,&serverRandom))!=0)

goto fail;
if ((err=SSLHashSHA1.update(&hashCtx,&signedParams))!=0)

goto fail;
goto fail;

if ((err=SSLHashSHA1.final(&hashCtx,&hashOut))!=0)
goto fail;

Syntax doesn’t help, but the compiler doesn’t seem concerned about
signaling obviously dead code...

O. Levillain (ANSSI) SSL/TLS 2015-11-23 27 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Implementation bugs Higher-level errors

True, False, FILE_NOT_FOUND

Focus CVE-2014-0092 on GnuTLS, in March 2014:
But this bug is arguably much worse than Apple’s, as it has
allowed crafted certificates to evade validation check for all
versions of GnuTLS ever released since that project got started
in late 2000.[...]
The check_if_ca function is supposed to return true (any
non-zero value in C) or false (zero) depending on whether the
issuer of the certificate is a certificate authority (CA). A true
return should mean that the certificate passed muster and can be
used further, but the bug meant that error returns were
misinterpreted as certificate validations.

By the way, a similar bug was found in OpenSSL... in 2008
(CVE-2008-5077).

O. Levillain (ANSSI) SSL/TLS 2015-11-23 29 / 40



Implementation bugs Higher-level errors

True, False, FILE_NOT_FOUND

Focus CVE-2014-0092 on GnuTLS, in March 2014:
But this bug is arguably much worse than Apple’s, as it has
allowed crafted certificates to evade validation check for all
versions of GnuTLS ever released since that project got started
in late 2000.[...]
The check_if_ca function is supposed to return true (any
non-zero value in C) or false (zero) depending on whether the
issuer of the certificate is a certificate authority (CA). A true
return should mean that the certificate passed muster and can be
used further, but the bug meant that error returns were
misinterpreted as certificate validations.

By the way, a similar bug was found in OpenSSL... in 2008
(CVE-2008-5077).

O. Levillain (ANSSI) SSL/TLS 2015-11-23 29 / 40



Implementation bugs Higher-level errors

Basic constraints omitted

A bug found in 2002 by Marlinspike in Microsoft Internet Explorer:
I the X509 stack did not check the Basic Constraints extension
I every end certificate could be reused as a CA

The same bug was found, in 2010, in Apple iOS...

Maybe we should not always blame the developer... and improve our
languages/tools/specs

O. Levillain (ANSSI) SSL/TLS 2015-11-23 30 / 40



Implementation bugs Higher-level errors

Basic constraints omitted

A bug found in 2002 by Marlinspike in Microsoft Internet Explorer:
I the X509 stack did not check the Basic Constraints extension
I every end certificate could be reused as a CA

The same bug was found, in 2010, in Apple iOS...

Maybe we should not always blame the developer... and improve our
languages/tools/specs

O. Levillain (ANSSI) SSL/TLS 2015-11-23 30 / 40



Implementation bugs Higher-level errors

Basic constraints omitted

A bug found in 2002 by Marlinspike in Microsoft Internet Explorer:
I the X509 stack did not check the Basic Constraints extension
I every end certificate could be reused as a CA

The same bug was found, in 2010, in Apple iOS...

Maybe we should not always blame the developer... and improve our
languages/tools/specs

O. Levillain (ANSSI) SSL/TLS 2015-11-23 30 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Implementation bugs The real burden of obsolete cryptography

Bleichenbacher
RSA PKCS#1 v1.5

I RSA encryption relies on a padding scheme
I how to handle an invalid padding at decryption time?

Bleichenbacher attack (1998)
I principle: send an altered ciphertext
I if the attacker can distinguish a valid padding from an invalid one,

plaintext recovery is possible
I application to TLS: the so-called Million Message Attack

The attack reappeared in 2014
I In Java crypto library, a padding error leads to an exception
I To avoid a timing attack, one must reimplement the algorithm
I A TLS implementer has to choose between code reuse and security

O. Levillain (ANSSI) SSL/TLS 2015-11-23 32 / 40



Implementation bugs The real burden of obsolete cryptography

Bleichenbacher
RSA PKCS#1 v1.5

I RSA encryption relies on a padding scheme
I how to handle an invalid padding at decryption time?

Bleichenbacher attack (1998)
I principle: send an altered ciphertext
I if the attacker can distinguish a valid padding from an invalid one,

plaintext recovery is possible
I application to TLS: the so-called Million Message Attack

The attack reappeared in 2014
I In Java crypto library, a padding error leads to an exception
I To avoid a timing attack, one must reimplement the algorithm
I A TLS implementer has to choose between code reuse and security

O. Levillain (ANSSI) SSL/TLS 2015-11-23 32 / 40



Implementation bugs The real burden of obsolete cryptography

Bleichenbacher
RSA PKCS#1 v1.5

I RSA encryption relies on a padding scheme
I how to handle an invalid padding at decryption time?

Bleichenbacher attack (1998)
I principle: send an altered ciphertext
I if the attacker can distinguish a valid padding from an invalid one,

plaintext recovery is possible
I application to TLS: the so-called Million Message Attack

The attack reappeared in 2014
I In Java crypto library, a padding error leads to an exception
I To avoid a timing attack, one must reimplement the algorithm
I A TLS implementer has to choose between code reuse and security

O. Levillain (ANSSI) SSL/TLS 2015-11-23 32 / 40



Implementation bugs The real burden of obsolete cryptography

MAC-then-Encrypt

Padding issues also exist in symmetric crypto
I Using MAC-then-CBC is vulnerable
I 2002: Vaudenay presents the attack principle
I 2011: XML Encryption is broken paper
I 2013: Lucky 13 proves applicability to TLS

Fix?
I duct-tape (add an implementation note in the standard)
I a sordid patch to ensure constant-time decryption
I use Encrypt-then-MAC (RFC 7366) or secure AEAD schemes

Again, one had to choose between modularity and security

O. Levillain (ANSSI) SSL/TLS 2015-11-23 33 / 40



Implementation bugs The real burden of obsolete cryptography

MAC-then-Encrypt

Padding issues also exist in symmetric crypto
I Using MAC-then-CBC is vulnerable
I 2002: Vaudenay presents the attack principle
I 2011: XML Encryption is broken paper
I 2013: Lucky 13 proves applicability to TLS

Fix?
I duct-tape (add an implementation note in the standard)
I a sordid patch to ensure constant-time decryption
I use Encrypt-then-MAC (RFC 7366) or secure AEAD schemes

Again, one had to choose between modularity and security

O. Levillain (ANSSI) SSL/TLS 2015-11-23 33 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Implementation bugs State machine bugs

SMACK and FREAK

In 2015, many attacks were published against nearly all TLS stacks
I In Java, sending an early Finished allows an attacker to skip all the

negotiation (including the server authentication)

I In several stacks, confusion between elliptic points used in ECDHE
and ECDSA when some messages are skipped

I OpenSSL accepted RSA-EXPORT key exchange instead of plain RSA
key exchange (FREAK)

In general, the state machine is drived by the received messages, whereas
the implementation should keep track of the expected messages

O. Levillain (ANSSI) SSL/TLS 2015-11-23 35 / 40



Implementation bugs State machine bugs

SMACK and FREAK

In 2015, many attacks were published against nearly all TLS stacks
I In Java, sending an early Finished allows an attacker to skip all the

negotiation (including the server authentication)
I In several stacks, confusion between elliptic points used in ECDHE

and ECDSA when some messages are skipped

I OpenSSL accepted RSA-EXPORT key exchange instead of plain RSA
key exchange (FREAK)

In general, the state machine is drived by the received messages, whereas
the implementation should keep track of the expected messages

O. Levillain (ANSSI) SSL/TLS 2015-11-23 35 / 40



Implementation bugs State machine bugs

SMACK and FREAK

In 2015, many attacks were published against nearly all TLS stacks
I In Java, sending an early Finished allows an attacker to skip all the

negotiation (including the server authentication)
I In several stacks, confusion between elliptic points used in ECDHE

and ECDSA when some messages are skipped
I OpenSSL accepted RSA-EXPORT key exchange instead of plain RSA

key exchange (FREAK)

In general, the state machine is drived by the received messages, whereas
the implementation should keep track of the expected messages

O. Levillain (ANSSI) SSL/TLS 2015-11-23 35 / 40



Implementation bugs State machine bugs

SMACK and FREAK

In 2015, many attacks were published against nearly all TLS stacks
I In Java, sending an early Finished allows an attacker to skip all the

negotiation (including the server authentication)
I In several stacks, confusion between elliptic points used in ECDHE

and ECDSA when some messages are skipped
I OpenSSL accepted RSA-EXPORT key exchange instead of plain RSA

key exchange (FREAK)

In general, the state machine is drived by the received messages, whereas
the implementation should keep track of the expected messages

O. Levillain (ANSSI) SSL/TLS 2015-11-23 35 / 40



Implementation bugs State machine bugs

Other problems with state machines

I Early CCS, also found by formal methods!
I In the previous SChannel vulnerability, even unsollicited client-sent

Certificate and CertificateVerify messages were interpreted

All TLS stacks more or less vulnerable to similar attacks:
I Maybe the specs are too complicated?
I Maybe we need more tests?

O. Levillain (ANSSI) SSL/TLS 2015-11-23 36 / 40



TLS: a quick tour

Two decades of SSL/TLS vulnerabilities
Authentication and key exchange
Symmetric crypto vulnerabilites
Implementation bugs

Implementation bugs
Classical errors
Higher-level errors
The real burden of obsolete cryptography
State machine bugs

Conclusion



Conclusion

TLS 1.3: a new hope?

Among the discussed flaws, a lot of them are by design
I Obsolete crypto, finally removed: PKCS#1 v1.5, RC4, CBC...
I State machine: the negotiation phase has been cleaned up
I In parallel to the specification efforts, the protocol is modeled and

tested using formal methods (TRON workshop early 2016)

Yet, TLS 1.3 will not solve
I compatibility issues: we will still need to speak TLS 1.2 and earlier for

some time...
I the complexity introduced by the new constructions

I 0-RTT
I Client authentication and key refresh are not stable yet...

O. Levillain (ANSSI) SSL/TLS 2015-11-23 38 / 40



Conclusion

Languages and methodology

Should not programming languages help us?
I Strong typing can help avoid simple bugs
I Memory mangagement done right

Tools can help us
I activate more warnings
I and handle them (-Werror)

Add more tests
I non-regression tests
I negative tests

O. Levillain (ANSSI) SSL/TLS 2015-11-23 39 / 40



Questions

Thank you for your attention

olivier.levillain@ssi.gouv.fr


	TLS: a quick tour
	Two decades of SSL/TLS vulnerabilities
	Authentication and key exchange
	Symmetric crypto vulnerabilites
	Implementation bugs

	Implementation bugs
	Classical errors
	Higher-level errors
	The real burden of obsolete cryptography
	State machine bugs

	Conclusion

