SSL/TLS : état des lieux et recommandations

Olivier Levillain ANSSI 4 juin 2012

Introduction

2 Versions de TLS/SSL

- a. Les versions historiques : SSLv2 et SSLv3
- b. La normalisation par l'IETF: TLS
- c. Problème avec la renégociation
- d. Test des implémentations

3 Suites cryptographiques

- a Tri des suites
- b. Nettoyage en pratique
- c. Test des implémentations

4 Certificats

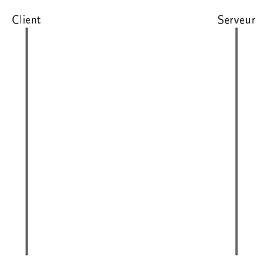
- a. Fonctionnement dans TLS
- b. Causes et impacts d'une compromission
- c Incidents récents
- d. Limitation des conséquences

Conclusion

1 Introduction

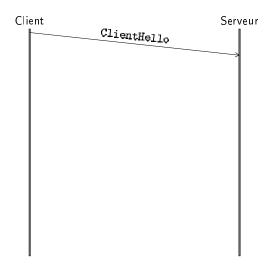
SSL/TLS: une brique essentielle d'Internet

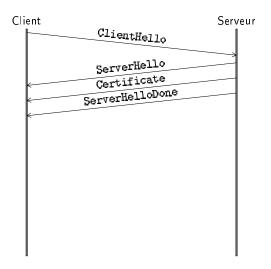
- https://inventé par Netscape en 1995
 - début du commerce en ligne
 - première version très mal conçue
 - plusieurs successeurs potentiels dès 96 :
 - PCT (Microsoft)
 - SSLv3 (Netscape)
- Utilisation massive aujourd'hui
 - HTTPS, bien au-delà du commerce en ligne
 - Sécurisation d'autres protocoles (SMTP, IMAP, LDAP, etc.)
 - VPN SSL
 - EAP TLS

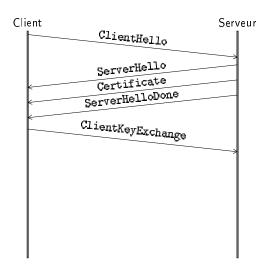


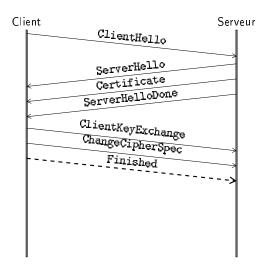
Un peu d'histoire

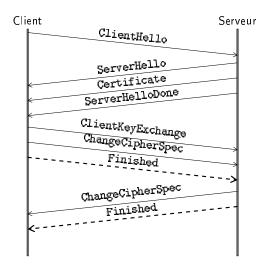
Version	Année	Observations	
SSLv2	1995	Protocole conçu par Netscape	
		Failles structurelles majeures	
SSLv3	1996	Faille dans l'implémentation de RSA	
		Problèmes d'interopérabilité	
TLSv1.0	2001	Attaques crypto sur le mode CBC	
		Des solutions de contournement existent	
TLSv1.1	2006	Version minimale conseillée	
TLSv1.2	2008	Support de nouveaux algorithmes	

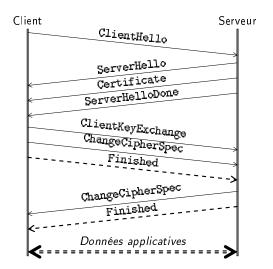












Implémentations connues

- OpenSSL
- GnuTLS
- NSS
- xyssl devenu polarssl
- Crypto API (jusqu'à Windows XP et Windows 2003)
- Crypto NG (Windows 7 et Windows 2008)
- implémentation Apple (MacOS + Safari)
- implémentation Opera
- et d'autres implémentations plus ou moins indépendantes
 - Java
 - Equipements réseau

2 Versions de TLS/SSL

- a. Les versions historiques : SSLv2 et SSLv3
- b. La normalisation par l'IETF: TLS
- c. Problème avec la renégociation
- d. Test des implémentations

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion | Les versions historiques: SSLv2 et SSLv3 |

SSLv2: une version à proscrire

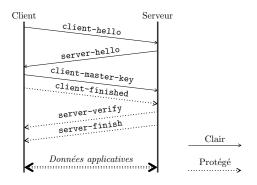
SSLv2 publié en 1995

SSLv2: une version à proscrire

- SSLv2 publié en 1995
- Protocole considéré comme dangereux
- RFC 6176 en mars 2011 (Prohibiting SSLv2)
 - HMAC MD5 pour l'intégrité
 - partage de la clé pour l'intégrité et la confidentialité
 - mauvaise gestion de la fin de connexion (attaques par troncature du flux possibles)
 - possibilité de faire une négociation à la baisse des algorithmes

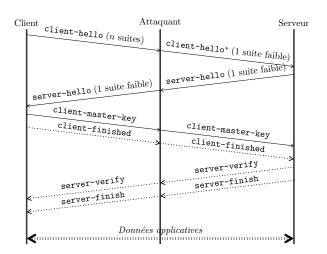
SSLv2: une version à proscrire

- SSLv2 publié en 1995
- Protocole considéré comme dangereux
- RFC 6176 en mars 2011 (*Prohibiting SSLv2*)
 - HMAC MD5 pour l'intégrité
 - partage de la clé pour l'intégrité et la confidentialité
 - mauvaise gestion de la fin de connexion (attaques par troncature du flux possibles)
 - possibilité de faire une négociation à la baisse des algorithmes


Une bonne nouvelle : SSLv2 tend (enfin) à disparaître.

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion | Les versions historiques: SSLv2 et SSLv3 |

SSLv2 : Présentation des messages



Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion | Les versions historiques: SSLv2 et SSLv3 |

Négociation à la baisse

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques | Certificats Conclusion | Les versions historiques: SSLv2 et SSLv3

SSLv3: une mise à jour majeure

SSLv3 publié en 1996

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion | Les versions historiques: SSLv2 et SSLv3 |

SSLv3: une mise à jour majeure

- SSLv3 publié en 1996
- Deux gros soucis avec de vieilles implémentations SSLv3 :
 - attaque de Bleichenbacher en 1998 sur PKCS#1

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion | Les versions historiques: SSLv2 et SSLv3 |

SSLv3: une mise à jour majeure

- SSLv3 publié en 1996
- Deux gros soucis avec de vieilles implémentations SSLv3 :
 - attaque de Bleichenbacher en 1998 sur PKCS#1
 - incompatibilité avec les extensions TLS (RFC 3546)
 - courbes elliptiques
 - reprise de session sans état côté serveur
 - renégociation sécurisée

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion Les versions historiques: SSLv2 et SSLv3

SSLv3: une mise à jour majeure

- SSLv3 publié en 1996
- Deux gros soucis avec de vieilles implémentations SSLv3:
 - attague de Bleichenbacher en 1998 sur PKCS#1
 - incompatibilité avec les extensions TLS (RFC 3546)
 - courbes elliptiques
 - reprise de session sans état côté serveur
 - renégociation sécurisée
- Une implémentation corrigeant ces deux défauts sera en pratique compatible avec TLSv1.0
 - SSLv3 ne présente donc aucun intérêt aujourd'hui

TLSv1.0: attaque sur le mode CBC (1/2)

■ En 2001, le protocole est repris par l'IETF et devient TLSv1.0 sans changement fondamental

TLSv1.0 : attaque sur le mode CBC (1/2)

- En 2001, le protocole est repris par l'IETF et devient TLSv1.0 sans changement fondamental
- Attaque de Rogaway en 2002 sur le mode CBC avec IV implicite...

TLSv1.0: attaque sur le mode CBC (1/2)

- En 2001, le protocole est repris par l'IETF et devient TLSv1.0 sans changement fondamental
- Attaque de Rogaway en 2002 sur le mode CBC avec IV implicite...
- médiatisée en 2011 par Duong et Rizzo (BEAST)

TLSv1.0: attaque sur le mode CBC (1/2)

- En 2001, le protocole est repris par l'IETF et devient TLSv1.0 sans changement fondamental
- Attaque de Rogaway en 2002 sur le mode CBC avec IV implicite...
- médiatisée en 2011 par Duong et Rizzo (BEAST)
- Réactions diverses
 - RC4 en priorité (incompatible avec DHE-RSA)
 - bricolage pour randomiser les IVs (en éclatant les messages)
 - passer à TLSv1.1

TLSv1.0 : attaques sur le mode CBC (2/2)

- Attaque de Rogaway en 2002
 - avant TLSv1.1, utilisation d'un IV implicite (chaînage des messages)
 - hypothèses lourdes, considérées irréalistes :
 - attaque à clair choisi
 - attaque adaptative (accès en lecture au chiffré)
 - correction dans TLSv1.1 (RFC 4346) avec un IV explicite, mais peu implémenté jusqu'à maintenant...

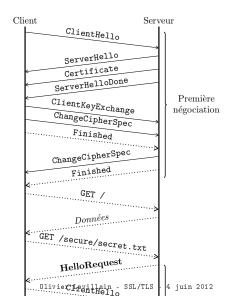
- 2011, Thai Duong et Juliano Rizzo ont présenté BEAST :
 - réutilisation d'un même canal TLS entre onglets
 - contournement de la Same Origin Policy
 - attaque pratique pour voler des cookies

- 2011, Thai Duong et Juliano Rizzo ont présenté BEAST :
 - réutilisation d'un même canal TLS entre onglets
 - contournement de la Same Origin Policy
 - attaque pratique pour voler des cookies
- Réactions diverses
 - choisir RC4 en priorité
 - bricolage pour randomiser les IVs (en éclatant les messages)
 - passer à TLSv1.1 (OpenSSL 1.0.1)

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion | La normalisation par 1'IETF: TLS

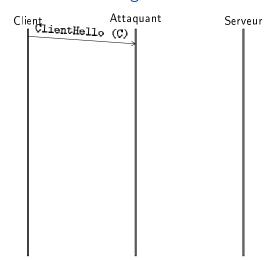
TLSv1.1 et 1.2 : en route vers le futur

■ TLSv1.1 : version minimum conseillée

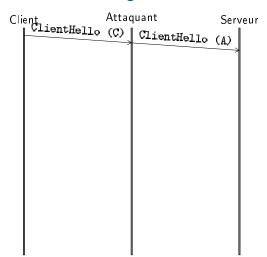

TLSv1.1 et 1.2 : en route vers le futur

- TLSv1.1 : version minimum conseillée
- TI Sv1.2 est une refonte du standard
 - inclusion des extensions dans le standard
 - inclusion d'autres RECs dans le cœur du standard
 - avec quelques petits cadeaux pour les algorithmes cryptographiques
 - modes combinés pour le chiffrement et l'intégrité (GCM)
 - ajout de suites cryptographiques avec HMAC SHA256
 - possiblité d'utiliser une PRF différente de MD5/SHA1

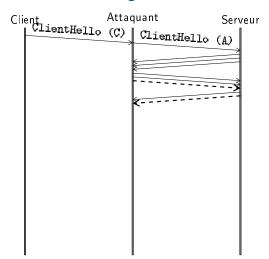
Description d'une renégociation légitime

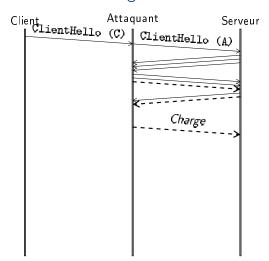

Vulnérabilité dans la renégociation

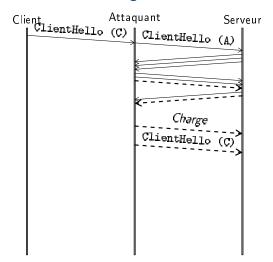
Client	Attaquant	Serveur
Cheft	Actuquant	Serveur



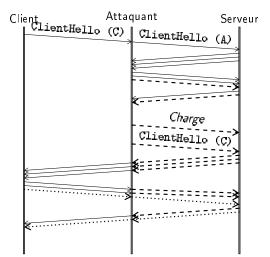
Vulnérabilité dans la renégociation

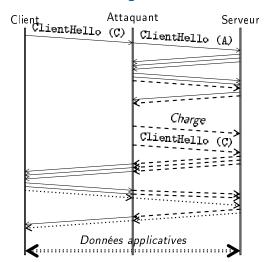


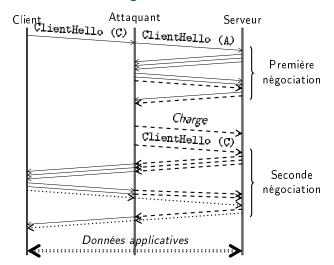

Problème avec la renégociation

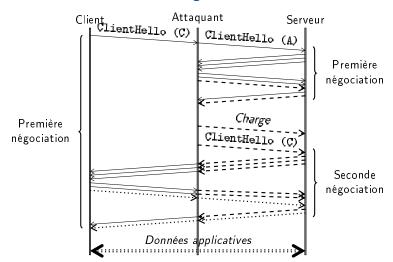


Problème avec la renégociation









Impacts sur la sécurité d'une renégociation faible

- HTTPS est sujet à plusieurs attaques
 - Attaques proches d'une CSRF
 - Utilisation de la méthode TRACE
 - Redirection vers une page HTTP
 - Vol d'authentifiants
- SMTPS / FTPS : des pistes mais rien de concret

RFC 5746

- Correction apportée à la renégociation par la RFC 5746
- ajout d'une extension décrivant les négociations passées
- nécessite les extensions TLS
- incompatibilités notoires d'implémentations SSLv3 avec les extensions TLS
- conclusion: TLSv1.0 minimum avec RFC 5746

Plan Introduction Versions de TLS/SSL Suites cryptographiques Certificats Conclusion

Test des implémentations

Implémentations

Logiciel	SSLv2	SSLv3	TLSv1.0	TLSv1.1	TLSv1.2
OpenSSL				1.0.1	1.0.1
GnuTLS					
NSS					
IE sous 7					
IE sous XP					
Firefox					
Chrome				21	
Opera					
Safari					
IIS sous 2008					
IIS sous 2003					
Apache mod_ssl				1.0.1	1.0.1
Non supporté		Configurable		Supporté	

Plan Introduction | Versions de TLS/SSL | Suites cryptographiques Certificats Conclusion | Test des implémentations

Comment tester les navigateurs et serveurs

Démos

Mesures (1/2)

- En juillet 2011, énumération des hôtes IPv4 sur le port 443
- si l'hôte répond, on lui envoie plusieurs ClientHello SSL divers
 - différentes versions (SSLv2, TLSv1.0, TLSv1.2)
 - différentes suites crypto (standard, DHE, EC)
 - différentes extensions

Mesures (2/2)

Quelques résultats :

- sur les 2 milliards d'IP routables
- 26 218 653 répondent sur TCP 443
- 11 469 062 répondent avec un ServerHello à au moins un stimulus (soit 43,75 %)
- parmi ceux-ci,
 - 98,19 % acceptent un CH standard TLSv1.0 (005)
 - 38,55 % acceptent un CH DHE (004)
 - 39,53 % acceptent un CH SSLv2 (007)
 - 99,06 % acceptent un CH SSLv2-TLSv1.0 (008)
 - 74,58 % acceptent un CH TLSv1.2 (009)

Conclusions et mise en perspective :

tout n'est pas perdu

23/50

pertinence de ce type de mesures?

- 3 Suites cryptographiques
 - a Tri des suites
 - b. Nettoyage en pratique
 - c. Test des implémentations

Description d'une suite crypto

Une suite cryptographique décrit les algorithmes

- d'authentification (du serveur)
- d'échange de clé
- de chiffrement des données
- de protection en intégrité des données

Traditionnellement, on regroupe

- les parties Kx et Au d'une part
- les parties Enc et Mac d'autre part

Exemples

TLS RSA WITH RC4 128 MD5

- RSA : chiffrement RSA (échange de clé et authentification implicite)
- RC4_128 pour le chiffrement des données
- HMAC-MD5 pour l'intégrité des données

Exemples

TLS_RSA_WITH_RC4_128_MD5

- RSA : chiffrement RSA (échange de clé et authentification implicite)
- RC4_128 pour le chiffrement des données
- HMAC-MD5 pour l'intégrité des données

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

- DHE : échange de clé Diffie-Hellman...
- RSA : signé par RSA
- AES_128_CBC pour le chiffrement des données
- HMAC-SHA1 pour l'intégrité des données

Plan Introduction Versions de TLS/SSL | Suites cryptographiques | Certificats Conclusion

Exemples

TLS_RSA_WITH_RC4_128_MD5

- RSA : chiffrement RSA (échange de clé et authentification implicite)
- RC4_128 pour le chiffrement des données
- HMAC-MD5 pour l'intégrité des données

TLS_DHE_RSA_WITH_AES_128_CBC_SHA

- DHE : échange de clé Diffie-Hellman...
- RSA : signé par RSA
- AES_128_CBC pour le chiffrement des données
- HMAC-SHA1 pour l'intégrité des données

DHE/ECDHE assurent la PFS (Perfect Forward Secrecy)

■ Le client propose une liste de suites (ClientHello), selon ses préférences

Fonctionnement de la négociation

- Le client propose une liste de suites (ClientHello), selon ses préférences
- Le serveur choisit parmi cette liste

Fonctionnement de la négociation

- Le client propose une liste de suites (ClientHello), selon ses préférences
- Le serveur choisit parmi cette liste
- Deux cas classiques :
 - comportement courtois (Apache)
 - comportement directif (IIS)

Recherche de suites offrant

- un bon niveau de sécurité
- une présence dans les implémentations

Echanges de clé

■ KRB5 : Kerberos

■ DH et ECDH : Diffie-Hellman fixe (dans le certificat)

■ PSK et SRP : utilisation d'un secret pré-partagé

RSA: chiffrement RSA

■ DHE et ECDHE : Diffie-Hellman éphémère

Authentification

■ *NULL* : à proscrire ■ KRB5 : Kerberos

■ *PSK* et *SRP* : secret pré-partagé

 $\blacksquare DSS : DSA$

■ RSA : signature ou chiffrement RSA ECDSA: DSA sur courbes elliptiques

Chiffrement des données (1/2)

- NULL : possible, mais rarement souhaité
- DES, RC2
- ARIA et SEED
- algorithmes acceptables pour une quantité de trafic limité
 - RC4 : seul algorithme de chiffrement par flot
 - TDEA et 3DES
- A F.S.
- CAMELLIA

Chiffrement des données (1/2)

Deux modes de chiffrement par bloc :

- CBC
- GCM (avec TLSv1.2)

Intégrité des données

- *HMAC MD5* : peu recommandable
- HMAC SHA1 : à défaut
- HMAC SHA256 ou HMAC SHA384 : disponible avec TLSv1.2
- \blacksquare GCM (mode AEAD) : disponible avec TLSv1.2

Résultat

- 39 des suites retenues sont dans OpenSSL 1.0.1
- dont 19 compatibles avec TLSv1.0

Préférences supplémentaires :

- utiliser les suites assurant la PFS
- éviter RC4 et 3DES
- éviter SHA1
- on obtient 12 suites compatibles avec OpenSSL 1.0.1

Avertissement

La taille des paramètres asymétriques n'est pas négociée :

- taille des clés RSA/DSA/ECDSA dans les certificats
- taille des groupes DH/ECDH lors de l'échange Diffie-Hellman

Réalisme des recommandations

Un mot sur les mesures :

- certains serveurs répondent avec une suite non proposée
- d'autres renvoient un serveur invalide car les deux octets manquent.
- conclusion : il existe des piles TLS exotiques dans la nature

Réalité des connexions

- Statistiques sur les données de l'EFF :
 - 38 % TLS_DHE_RSA_WITH_AES_256_CBC_SHA
 - 32 % TLS_RSA_WITH_RC4_128_MD5
 - 23 % TLS_RSA_WITH_AES_256_CBC_SHA

Réalité des connexions

- Statistiques sur les données de l'EFF :
 - 38 % TLS_DHE_RSA_WITH_AES_256_CBC_SHA
 - 32 % TLS_RSA_WITH_RC4_128_MD5
 - 23 % TLS RSA WITH AES 256 CBC SHA
- Conséquence du comportement directif de certains serveurs
 - IIS choisira toujours TLS_RSA_WITH_RC4_128_MD5
 - le comportement est configurable, mais global au système sous Windows

Réalité des connexions

- Statistiques sur les données de l'EFF :
 - 38 % TLS_DHE_RSA_WITH_AES_256_CBC_SHA
 - 32 % TLS_RSA_WITH_RC4_128_MD5
 - 23 % TLS RSA WITH AES 256 CBC SHA
- Conséquence du comportement directif de certains serveurs
 - IIS choisira toujours TLS RSA WITH RC4 128 MD5
 - le comportement est configurable, mais global au système sous Windows
- Est-il possible d'imposer la PFS du point de vue client?
 - ne proposer que des suites DHE/ECDHE fait perdre des serveurs
 - cette configuration globale est à l'application, voire au système
 - besoin d'affiner la décision par application et par serveur

- 4 Certificats
 - a. Fonctionnement dans TLS
 - b. Causes et impacts d'une compromission
 - c Incidents récents
 - d. Limitation des conséquences

Message Certificate

- Le message contient une suite de certificats
- le premier désigne le serveur TLS
- chaque certificat est signé par le suivant
- l'autorité racine peut être omise
- la désignation du serveur dans le certificat est mal définie
 - HTTPS : Subject.CommonName historiquement
 - HTTPS : Extension SubjectAltName conseillée
 - SMTPS: Problème en cas de serveurs multiples: que doit contenir le certificat
 - chaque cas est traité différemment

La réalité des chaînes de certification

- Chaînes incomplètes
- chaînes désordonnées
- certificats dupliqués
- certificats inutiles
- chaînes multiples (A, B, C, B^*, C^*)
- incompatibilités réelles entre certaines piles et certains sites

La réalité des autorités de certifications

Ce n'est pas une forêt!

- signatures croisées entre autorités
- besoin de garder en cache certains certificats d'autorité (pour compléter les chaînes)

La réalité des autorités de certifications

Ce n'est pas une forêt!

- signatures croisées entre autorités
- besoin de garder en cache certains certificats d'autorité (pour compléter les chaînes)

De nombreux magasins... bien remplis

- Firefox en contient au moins trois sortes :
 - les certificats racines par défaut (environ 150)
 - les certificats du profil
 - ajoutés par l'utilisateur
 - ajoutés (sans notion de confiance) par Firefox
 - un cache de certificats de session pour stocker d'autres certificats rencontrés
- Microsoft propose un magasin dynamique
- Idem pour Opera

Suite sur les magasins

- Beaucoup d'applications utilisent un magasin indépendant
 - produits Mozilla
 - Safari
 - Opera
 - applications Adobe
 - Java (parfois)

Suite sur les magasins

- Beaucoup d'applications utilisent un magasin indépendant
 - produits Mozilla
 - Safari
 - Opera
 - applications Adobe
 - Java (parfois)
- D'autres utilisent des magasins partagés
 - applications Microsoft
 - Chrome
 - produits Mozilla, à l'avenir (\$HOME/.pki)

Suite sur les magasins

- Beaucoup d'applications utilisent un magasin indépendant
 - produits Mozilla
 - Safari
 - Opera
 - applications Adobe
 - Java (parfois)
- D'autres utilisent des magasins partagés
 - applications Microsoft
 - Chrome
 - produits Mozilla, à l'avenir (\$HOME/.pki)
- Pour ou contre un magasin centralisé
 - avantages : retrait efficace d'autorité compromise, ajout rapide d'autorités internes
 - inconvénient : manque de finesse dans la politique de confiance

Causes

- Taille de clé faible
 - TI
 - AC malaise Digicert Sdn. Bhd.
- Mauvaise gestion de l'accès aux secrets
 - accès physique au serveur
 - accès logique (vulnérabilité du serveur, mauvais contrôle d'accès)
- Défaut dans la génération d'aléa
 - 2006-08 : Debian OpenSSL
 - 2011 : Lenstra et al. Ron was wrong, Whit is right

Impacts

La perte d'une clé privée de serveur permet

- une attaque passive sur les connexions utilisant le chiffrement RSA, y compris les communications passées (pas de PFS)
- une attaque active dans tous les cas

La perte d'une clé privée d'une AC reconnue par les navigateurs permet

- la signature de certificats pour des sites quelconques (y compris mail.google.com)
- la signature de certificats d'autorité
- la signature de code (pilotes de périphériques, applets Java...)
- Remarque : en général, la clé privée n'est pas divulguée, mais un attaquant gagne le droit de l'utiliser, ce qui restreint ses possibilités.

- mars 2011 : Comodo
 - intrusion d'un attaquant
 - signature de certificats pour des sites intéressants
 - détection, révocation et mise à jour des navigateurs dans les jours suivants

- mars 2011 : Comodo
 - intrusion d'un attaquant
 - signature de certificats pour des sites intéressants
 - détection, révocation et mise à jour des navigateurs dans les jours suivants
- juillet-septembre 2011 : Diginotar
 - intrusion d'un attaquant
 - détection sans correction de la faille sous-jacente
 - signature de nombreux certificats
 - détection en Iran de l'utilisation de certificats frauduleux
 - prise de conscience chez Diginotar et le gouvernement NL
 - révocation de l'autorité racine
 - faillite de Diginotar

- mars 2011 : Comodo
 - intrusion d'un attaquant
 - signature de certificats pour des sites intéressants
 - détection, révocation et mise à jour des navigateurs dans les jours suivants
- juillet-septembre 2011 : Diginotar
 - intrusion d'un attaquant
 - détection sans correction de la faille sous-jacente
 - signature de nombreux certificats
 - détection en Iran de l'utilisation de certificats frauduleux
 - prise de conscience chez Diginotar et le gouvernement NL
 - révocation de l'autorité racine
 - faillite de Diginotar
- janvier 2012 : Trustwave
 - annonce de la certification d'AC intermédiaire pour analyser de manière transparente le trafic
 - certificats révoqués
 - nombreuses réactions dans la communauté, mais l'AC reste dans les magasins

Solutions actuelles

- Restreindre les autorités racines
 - facile côté serveur
 - faisable pour les clients VPN, mail, etc.
 - pas envisageable pour les navigateurs
- Audit des autorités de certification
- utilisation de HSM pour protéger les clés privées
- ajout de contraintes sur les certificats générés
 - interdire la signature automatique d'AC intermédiaire
 - interdire l'usage de certains noms de domaines
 - utiliser des extensions X.509 pour restreindre la portée des ACs
- les mécanismes officiels de révocation (CRL, OCSP)
- des listes noires
- des listes blanches (Certificate pinning dans Chrome)

- améliorer l'existant
 - certificats EV (réalité surtout commerciale)
 - CA/B Forum
 - utilisation d'extensions X.509

- améliorer l'existant
 - certificats EV (réalité surtout commerciale)
 - CA/B Forum
 - utilisation d'extensions X.509
- forcer la révocation (hard fail)
 - OCSP stapling
 - certificats à durée de vie courte

- améliorer l'existant
 - certificats EV (réalité surtout commerciale)
 - CA/B Forum
 - utilisation d'extensions X.509
- forcer la révocation (hard fail)
 - OCSP stapling
 - certificats à durée de vie courte
- ajouter de l'information supplémentaire hors-bande
 - DANE (DNS-Based Authentication of Named Entities) poussé par Google
 - Convergence de Moxie Marlinspike
 - Sovereign Keys de l'EFF
 - TACK

- améliorer l'existant
 - certificats EV (réalité surtout commerciale)
 - CA/B Forum
 - utilisation d'extensions X.509
- forcer la révocation (hard fail)
 - OCSP stapling
 - certificats à durée de vie courte
- ajouter de l'information supplémentaire hors-bande
 - DANE (DNS-Based Authentication of Named Entities) poussé par Google
 - Convergence de Moxie Marlinspike
 - Sovereign Keys de l'EFF
 - TACK
- permettre plus de finesse dans la gestion des magasins
 - par application
 - par serveur

■ SSL/TLS est protocole mûr basé sur des schémas éprouvés et il est théoriquement possible de l'employer correctement

- SSL/TLS est protocole mûr basé sur des schémas éprouvés et il est théoriquement possible de l'employer correctement
- Si on maîtrise clients et serveurs, mise en pratique sécurisée possible
- Pour les navigateurs, beaucoup de difficultés
 - équilibre difficile entre compatibilité et sécurité
 - mécanisme de gestion de la confiance douteux

- SSL/TLS est protocole mûr basé sur des schémas éprouvés et il est théoriquement possible de l'employer correctement
- Si on maîtrise clients et serveurs, mise en pratique sécurisée possible
- Pour les navigateurs, beaucoup de difficultés
 - équilibre difficile entre compatibilité et sécurité
 - mécanisme de gestion de la confiance douteux
- Perspectives :
 - proposer des plates-formes de test (client/serveur)
 - continuer l'analyse du paysage SSL
 - travail sur la confiance et la révocation (CA/B Forum, OCSP stapling, DANE, TACK...)
 - IDS/IPS : utilisation de Suricata
 - proxy local pour affiner la gestion de la confiance

Questions?

Merci de votre attention.

