concerto: A Methodology Towards Reproducible Analyses of TLS Datasets

Olivier Levillain, Maxence Tury and Nicolas Vivet

ANSSI

Real World Crypto January 6th 2017

Levillain, Tury, Vivet (ANSSI)

concerto @ RWC 2017

2017-01-06 1 / 16

$\mathsf{SSL}/\mathsf{TLS}$ in a nutshell

 $\ensuremath{\mathsf{SSL}}\xspace/\ensuremath{\mathsf{TLS}}\xspace$ a security protocol providing

- server (and client) authentication
- data confidentiality and integrity

 $\ensuremath{\mathsf{SSL}}\xspace/\mathsf{TLS}$ is a fundamental basic block of Internet security

$\mathsf{SSL}/\mathsf{TLS}$ data collection

Interesting criteria to study the ecosystem

- protocol features and cryptographic capabilities
- certificates and trust aspects
- server behaviour

Different methodologies

- Full IPv4 scans
- Domain Names scans
- Passive Observation

Stimulus choice (version, suites, extensions)

concerto: motivation

The tools used to produce the data for [ACSAC'12]

- parsifal, a home-made parser generator, to parse the answers
- (mostly undocumented or even not versionned) various scripts

In 2015, we tried to run similar analyses on new campaigns

- problem: several criteria had to evolve (trust stores, weak suites)
- how to compare the situation now and then?
- how to include new, external, datasets?

The concerto way, towards reproducible analyses

- keep the raw data and the associated metadata
- automate the analysis process
- run it from scratch when needed

concerto, step by step

Context preparation

- NSS certificate store extraction from source code
- metadata injection (stimuli, certificate store)

Answer injection

- answer type analysis
- raw certificate extraction

Certificate analysis

- certificate parsing
- building of all* possible chains

Statistics production

► TLS parameters, certificate chain quality, server behavior

- A AES128-SHA
- B ECDH-ECDSA-AES128-SHA
- C an alert

- A AES128-SHA
- B ECDH-ECDSA-AES128-SHA
- C an alert
- D something else (RC4_MD5)

- A AES128-SHA
- B ECDH-ECDSA-AES128-SHA
- C an alert
- D something else (RC4_MD5)
 - sadly, this can be explained
 - ▶ worth mentionning: some servers select the NULL ciphersuite

- A AES128-SHA
- B ECDH-ECDSA-AES128-SHA
- C an alert
- D something else (RC4_MD5)
 - sadly, this can be explained
 - worth mentionning: some servers select the NULL ciphersuite
- E a ServerHello *missing* two bytes

What can a TLS server answer to a client proposing the following ciphersuites: AES128-SHA and ECDH-ECDSA-AES128-SHA?

- A AES128-SHA
- B ECDH-ECDSA-AES128-SHA
- C an alert
- D something else (RC4_MD5)
 - sadly, this can be explained
 - worth mentionning: some servers select the NULL ciphersuite
- E a ServerHello *missing* two bytes

Our answers:

- parsifal, an open-source framework, to develop robust binary parsers
- use metadata (the used stimulus), to spot inconsistencies

Levillain, Tury, Vivet (ANSSI)

Evolution of TLS versions

TLS hosts

Levillain, Tury, Vivet (ANSSI)

Certificate chains: theory and practice

The Certificate message is specified as follows:

- the server certificate first
- each following CA cert must sign the preceding one
- the root CA may be ommitted

The reality is otherwise:

- unordered messages
- certificate repetition
- presence of useless certificates
- missing certificates (EFF calls such chains transvalid)

TLS 1.3 relaxes the strict order constraint

Levillain, Tury, Vivet (ANSSI)

Evolution of certificate chain quality Trusted hosts

Levillain, Tury, Vivet (ANSSI)

Exemple of a certificate chain

Levillain, Tury, Vivet (ANSSI)

concerto @ RWC 2017

2017-01-06 10 / 16

Challenges in the certificate chain building phase

Actually, concerto does not build all possible chains, for two reasons

- X.509v1 certificates generated by appliances
 - ▶ X.509v1 have no extension, so they used to be considered as CA
 - however, we encounter too many of them in some campaigns
 - 140,000 similar self-signed distinct certificates
 - > 20 billion signatures to check, for isolated self-signed certificates
 - only X.509v1 trust roots are considered as CAs

Challenges in the certificate chain building phase

Actually, concerto does not build all possible chains, for two reasons

- X.509v1 certificates generated by appliances
 - ▶ X.509v1 have no extension, so they used to be considered as CA
 - however, we encounter too many of them in some campaigns
 - 140,000 similar self-signed distinct certificates
 - > 20 billion signatures to check, for isolated self-signed certificates
 - only X.509v1 trust roots are considered as CAs
- Crazy cross-certification
 - there exist mutually cross-signed CAs...
 - where each CA has emitted several distinct certificates with the same public key
 - one way to go is to create an equivalence class of CAs
 - the other is to limit the number of transvalid certificates

Interlude: some figures about certificates

RSA Key Sizes (full IPv4 scan in 2015)

- (TLS hosts) 384 16384
- (Trusted hosts) 1024 4096

Maximum observed size of a Certificate messages (EFF data in 2010)

- 150 certificates
- including (only) one duplicate
- including 113 trusted roots

Misc (from 2017 HTTPS TopAlexa 1M scans.io data)

- ▶ 9% RSA-SHA1 signatures (and 976 RSA-MD5)
- 5% X.509v1 certificates (and 3 X.509v4)

Levillain, Tury, Vivet (ANSSI)

Server behaviour

You can take advantage of multiple stimuli to grasp server behaviour

Feature intolerance

- Using our IPv4 multi-stimuli campaigns (2011 and 2014)
- ▶ EC- and TLS 1.2-intolerance has regressed between 2011 and 2014

SSLv2 support

- ▶ 40% of HTTPS servers were still accepting SSLv2 in 2014
- all vulnerable to DROWN attack
- the situation was worse in practice (SMTPS servers in particular)

Implementation choices, limitations and future work

Current concerto design rationale

- store enriched data in CSV tables
- split data processing into simple tools
- avoid tools requiring a global view when possible

Future work

- more sophisticated backends
- more polished statistics and report tools
- inclusion of other relevant data sources (e.g. revocation info, CT)

Levillain, Tury, Vivet (ANSSI)

Conclusion

To analyse the $\ensuremath{\mathsf{SSL}}/\ensuremath{\mathsf{TLS}}$ ecosystem, we need

- up-to-date high quality data
 - with clean collection methodologies
 - with associated metadata
 - possibly using multiple stimuli
- methodologies and tools to allow for reproducible analyses
 - to compare results regarding different datasets
 - to understand trends on relatively long periods

concerto is a first step to accomplish the second part

- parsifal and concerto v0.3 are available online
- there is some documentation on the GitHub repository
- don't hesitate to drop a mail if you are interested in the tool

Thank you for your attention

olivier.levillain@ssi.gouv.fr

https://github.com/ANSSI-FR/parsifal https://github.com/ANSSI-FR/concerto

More information and results in my PhD thesis https://www.ssi.gouv.fr/publication/une-etude-de-lecosysteme-tls/ (manuscript in English, beyond the page in French)

Backup slides

Backup slides

Typical figures for a full IPv4 HTTPS campaign

Table	N rows		
Server answers	40 M		
(including TLS answers)	30 M		
Distinct Certificate messages	20 M		
Parsed certificates	10 M		
Unparsed certificates	100		
Verified links	14 M		

Levillain, Tury, Vivet (ANSSI)

More certificate examples

Levillain, Tury, Vivet (ANSSI)

concerto @ RWC 2017

2017-01-06 19 / 16

Backup slides

More certificate examples

S874051e99b8be4723fd04dc69fb1ce5d0ecd77 - 3 - Mozilla Firefox			•	
∫5874051e99b8be4723fd × ∲				
🔄 🛈 localhost:5000/chains/by-hash/5874051e99b8be4723fd0d4dc69fb1ce5d0ecd77/3 🛛 C 🛛 Q. Search 🗘 🗎 💟 🤳	▶ 俞	1	*	- ≡
Trust flag Grade				^
trusted C				
Certificates in chain				
0/OU=Domain Control Validated/OU=PositiveSSL Wildcard/CN=*.milanuncios.com				
3 /C=GB/S=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=COMODO RSA Domain Validation Secure Server CA				
1 //C=GB/S=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=COMODO RSA Certification Authority				
8/C=SE/O=AddTrust AB/OU=AddTrust External TTP Network/CN=AddTrust External CA Root				
Unused certificates				
Chused certificates				
2 /OU=Domain Control Validated/OU=PositiveSSL Wildcard/CN=*.milanuncios.com				
4 [C=GB/S=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=COMODO RSA Certification Authority				
5 /OU=Domain Control Validated/OU=PositiveSSL Wildcard/CN=*.milanuncios.com				
6//C=CB/S=Greater Manchester/L=Salford/O=COMODO CA Limited//CN=COMODO RSA Domain Validation Secure Server CA				
//L=GB/S=Greater Manchester/L=Satiord/O=COMODO CA Limited/CN=COMODO RSA Certification Authority				-

Levillain, Tury, Vivet (ANSSI)

More certificate examples

Levillain, Tury, Vivet (ANSSI)

concerto @ RWC 2017

2017-01-06 21 / 16

Backup slides

More certificate examples

Levillain, Tury, Vivet (ANSSI)

Analysing the certificate chains

To analyse these chains properly, concerto uses the following tools:

- inject
- injectAnswers
- parseCerts
- prepareLinks
- checkLinks
- buildChains

Analysing the certificate chains

To analyse these chains properly, concerto uses the following tools:

- inject to record trust CAs from your reference store
- injectAnswers to parse server messages and extract certificates
- parseCerts to parse the certificates
- prepareLinks to identify the possible links between certificates
- checkLinks to check the cryptographic signature
- buildChains to try and built all* the possible chains