
concerto: A Methodology Towards Reproducible
Analyses of TLS Datasets

Olivier Levillain
ANSSI

olivier.levillain@ssi.gouv.fr

Maxence Tury
ANSSI

maxence.tury@ssi.gouv.fr

Nicolas Vivet
ANSSI

nicolas.vivet@ssi.gouv.fr

Abstract—Over the years, SSL/TLS has become an essential
part of Internet security. As such, it should offer robust and state-
of-the-art security, in particular for HTTPS, its first application.
Theoretically, the protocol allows for a trade-off between secure
algorithms and decent performance. Yet in practice, servers do
not always support the latest version of the protocol, nor do
they all enforce strong cryptographic algorithms. To assess the
quality of HTTPS and other TLS deployment at large, several
studies have been led to grasp the state of the ecosystem, and to
characterize the quality of certificate chains in particular.

In this paper, we propose to analyse some of the existing data
concerning TLS measures on the Internet. We studied several
datasets, from the first public ones in 2010 to more recent
scans. Even if the collection methodology and the used tools vary
between campaigns, we propose a unified and reproducible way
to analyse the TLS ecosystem through different datasets. Our
approach is based on a set of open-source tools, concerto.

Our contribution is therefore threefold: an analysis of existing
datasets to propose a unified methodology, the implementation
of our approach with concerto, and the presentation of some
results to validate our toolsets.

I. INTRODUCTION

SSL (Secure Sockets Layer) is a cryptographic protocol
designed by Netscape in 1995 to protect the confidentiality
and integrity of HTTP connections. Since 2001, the protocol
has been maintained by the IETF (Internet Engineering Task
Force) and has been renamed TLS (Transport Layer Security).

SSL/TLS primary objective was to secure online-shopping
and banking web sites. With the so-called Web 2.0, its us-
age has broadened drastically: services provided by Google,
Yahoo!, Facebook or Twitter now offer a secure access using
TLS. Furthermore, other services like SMTP or IMAP benefit
from the security layer; there also exists several VPN (Virtual
Private Network) implementations relying on SSL; finally,
some Wifi access points use TLS as an authentication protocol
(EAP-TLS).

Several flaws have been discovered in TLS, leading to
revisions of the standard. Moreover, TLS is subject to various
configuration and implementation errors. As TLS usage is
so ubiquitous on the Internet, it is legitimate to assess its
security. A lot of studies have been led since 2010 to test
the behaviour of HTTPS servers world wide. Recently more
tools and scans have been made available, allowing for more
data to be collected.

Yet, the conditions used to collect data are not always
clearly stated, and some of the proposed analyses were not

easy to reproduce. This is why we studied several datasets to
apply the same reproducible methodology on them.

Section II briefly describes SSL/TLS to present the basic
notions needed to understand how data are usually collected.
Then, section III presents the different methodologies of mea-
sures used in practice for SSL/TLS. Section IV lists several
datasets and analyses that have been published since 2010.
Section V describes concerto, the toolset we developed to
analyse the different datasets in a reproducible and homoge-
neous way, while section VI presents several challenges we
had to face with our tools. Finally, section VII contains results
obtained on the different datasets.

II. SSL/TLS IN A NUTSHELL

SSL (Secure Sockets Layer) is a protocol originally de-
veloped by Netscape in 1995 to secure HTTP connections
using a new scheme, https://. The first published version
was SSLv2, rapidly followed by SSLv3, which fixed major
conceptual flaws. SSLv2 and SSLv3 use different message
formats.

In 2001, the evolution and the maintenance of the protocol
were handed to the IETF (Internet Engineering Task Force)
which renamed it TLS (Transport Layer Security). TLS 1.0 can
be seen as an editorial update of SSLv3 but the cryptographic
janitorial work fixed a weakness in the CBC padding [18].
TLS 1.1 was published in 2006 (fixing another CBC flaw [5])
and TLS 1.2 [4], the current version, in 2008, providing new
cryptographic algorithms (GCM mode, SHA2 support). Today,
SSLv2 and SSLv3 should not be used anymore, and TLS 1.1
and 1.2 should be preferred. The IETF TLS working group
has been working on TLS 1.3 since 2014.

To establish a secure session between a client and a server,
SSL/TLS uses handshake messages to negotiate its parameters:
the version of the protocol, the cryptographic algorithms and
the associated keys. The algorithms are described by cipher-
suites which define how to authenticate the server, establish
a shared secret used to derive keys, and how to encrypt and
ensure the integrity of the application data.

A. A typical TLS connection

Figure 1 presents a handshake between a client and a
server. First, the client contacts the server over TCP and
proposes several versions and ciphersuites; this initial mes-
sage, ClientHello, also contains a nonce. If the server
finds an acceptable ciphersuite, it responds with several
messages: ServerHello, containing the selected version



Client Server
ClientHello

ServerHe
llo

Certific
ate

ServerHe
lloDone

ClientKeyExchangeChangeCipherSpec
Finished

ChangeCi
pherSpec

Finished

Application Data

Cleartext

Ciphertext

Fig. 1. Example of a TLS negotiation.

and ciphersuite, the Certificate message, containing the
chain of certificates for the site contacted, and an empty
ServerHelloDone message ending the server answer.
Then, the client checks the certificates received and sends a
ClientKeyExchange message, carrying a random value
encrypted with the public key of the server1. At this point, the
client and the server share this secret value, since the server
can decrypt the ClientKeyExchange message. Finally, the
ChangeCipherSpec messages activate the negotiated suite
and keys, and the Finished messages ensure the integrity
of the handshake a posteriori, as they contain a hash of all the
handshake messages previously exchanged; they are the first
messages protected with the negotiated algorithms and keys.

At any moment, an Alert message can be sent to signal
a problem, e.g. if no ciphersuite is acceptable, or if the client
does not trust the certificate chain.

Existing studies mainly focus on the first flight of server
messages (from ServerHello to ServerHelloDone)
since it is composed of cleartext messages containing the pa-
rameters chosen by the server (protocol version, cryptographic
algorithms, supported extensions) and its certificate chains.

B. X.509 certificates in TLS

The certificates used in TLS follow the X.509 standard.
The TLS Public Key Infrastructure is based on several root
authorities trusted by default by web browsers. The server
certificate is sent in the Certificate message, along with
its certificate chain, that is the ordered set of certificates
needed to build, link by link, a certificate path to a trusted
root. Figure 2 presents a typical chain, where S is the server
certificate, I is the certificate of an intermediate authority, and
R is the certificate of a trusted root; it also describes three
different Certificate messages representing this chain. A
conforming TLS implementation must send S, I and R, in
that order (the first Certificate message of figure 2). A
server can omit the root certificate since the client needs to
know (and trust) R to validate the chain2. In theory, all other

1For the sake of simplicity, the negotiation presented here uses RSA
encryption as key exchange algorithm, but other mechanisms exist, like DHE-
RSA where an ephemeral Diffie-Hellman is signed by the server with its
private key.

2Actually, this assumption, which is true with the classic Public Key
Infrastructure, does not necessary hold with new trust models like DANE [11]
where the client may only know the hash of the expected trusted root.

Certificate messages should be discarded.

In practice, a lot of TLS servers present an unordered
certificate chain (e.g. the second message of figure 2). It is
relatively easy to accomodate such messages; moreover, un-
ordered chains are sometimes justified in case there exists two
valid certificate chains, leading to different root certificates:
what is the correct Certificate message to produce for
the chain to be accepted by clients trusting at least one of the
root certificates? This matter was discussed within the TLS
working group, and the order constraints should be relaxed in
TLS 1.3.

Another problem with chains is that a smaller proportion
of servers even omit intermediate certificates (as in the third
message of the figure). To be able to build a chain in this case,
the client has to grab missing certificates using out-of-band
mechanisms (by relying on an X.509 extensions when present3,
or maintaining a cache of previously seen certificates).

Some implementations, like the Java TLS stack, do not
try and repair broken Certificate messages, which leads
to errors when a client uses such a stack. On the contrary,
repairing broken chains may be complex to implement and
can lead to security flaws, as was recently shown in OpenSSL
(CVE-2015-1793).

For these reasons, we would like to assess the quality
of certificate chains, w.r.t several criteria: cryptographic algo-
rithms, key sizes, validity periods, but also the intrinsic quality
of the sent chain (order and completeness).

III. DIFFERENT METHODOLOGIES OF MEASURES

Gathering data about the HTTPS server ecosystem can be
done in several ways:

1) enumerating every routable address in the IPv4 space
to find open HTTPS ports (443/tcp) and establish TLS
sessions with them;

2) contacting hosts based on a list of hostnames
(e.g. Top Alexa 1 Million4);

3) collecting real HTTPS traffic from consenting users.

The first method seems to be the most exhaustive, because
it tests every IP in the world. It is thus possible to speak
with many different TLS implementations to broaden our
knowledge of the ecosystem. However, it leads to contacting
many non-HTTPS hosts. Also, it does not take into account the
popularity of Internet sites: it does not discriminate sites like
google.com from random.dyndns.org or even from an
unnamed host (e.g. an ADSL modem).

The second option is more restrictive, but better represents
user needs, and the proportion of HTTPS servers among the
hosts to contact is higher. Besides, this method is compliant
with the SNI (Server Name Indication) extension [1], which
allows a client to contact different virtual hosts at the same
address.

Finally, the last one is completely passive and is really
centered on users’ habits. In this case it is important to have
access to the traffic of many different consenting users to get

3However, by construction, those extensions have not yet been checked.
4http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

2



R

I

S

3 I
2 R R
1 I X R
0 S S S

position Compliant Unordered Incomplete
Certificate messages

Fig. 2. A typical certificate chain, and different Certificate messages representing this chain. The position column indicates the position in the message.

relevant data that would be comparable to other studies. On the
one hand, such measures are truly reprentative of real traffic,
but on the other hand, the stimuli used to test the servers are not
controlled by the experimenter, contrary to the other methods.
Table I summarizes the differences between these methods.

IV. AVAILABLE DATASETS

This section presents some TLS datasets we studied. It only
focuses on HTTPS datasets, and it is not an exhaustive list of
all the existing studies, but this inventory helped us gather
information about the expected properties of datasets to allow
for relevant analyses.

A. 2010: the first public campaigns

The EFF (Electronic Frontier Foundation) performed two
campaigns to explore the SSLiverse in August and December
2010. They presented their results about the gathered certifi-
cates [8], [9]. They published some of their tools, as well as the
data, both processed (the certificate database) and unprocessed
(the raw answers). This allowed us to understand their collec-
tion methodology and to analyse their data ourselves. These
campaigns follow the first methodology described earlier (Full
IPv4 space).

B. 2011: analysis of the impact of different points of view

In 2011, Holz et al. from the University of München
gathered and studied different data sets: active probing of
popular sites, passive monitoring on a 10 GB link and the
EFF campaigns [12]. They provided a thorough analysis of
the certificates received for each of the campaigns studied. In
particular they compared the certificates received by clients
from different source addresses and obtained differences in
these sets. Using real world traffic is a very interesting source
of information and it is complementary to full IPv4 host
enumerations.

Since the researchers’ datasets were either already available
(EFF) or only partial (the collected server certificates for
popular sites from different locations), we did not investigate
this dataset further.

C. 2010-2011-2014: multiple stimuli to grasp the server be-
havior

In 2012, we presented another study of the HTTPS ecosys-
tem [17], based on several full IPv4 scans: the EFF dataset and
other campaigns we led in 2010 and 2011. Our contribution
was to use several ClientHello messages to probe the
servers, allowing to get information about the servers’ behavior
against uncommon stimuli. Several statistical results were also

presented using different prisms: restricting the datasets to
trusted hosts or to EV hosts. We also gathered similar data
in 2014.

We used custom Python scripts to scan open 443 ports
and to retrieve server answers to different ClientHello
messages. The data was then analysed with open-source tools
based on Parsifal [16].

D. Since 2012: SSL Pulse

Since 2009, Qualys has proposed an online tool called SSL
Server Test5. In 2010, Ristic presented a SSL survey, based
on these tools, focusing on a DNS enumeration of HTTPS
hosts [19]. His goal was to assess the quality of TLS answers
from servers reachable via a DNS hostname: for example, at
the time, SSLv2 was still widely supported, while TLS 1.1 and
TLS 1.2 were virtually inexistant. Since April 2012, the study
has been extended into SSL Pulse [15], a dashboard aiming
at measuring the effective security of SSL on a set of popular
sites. SSL Pulse provides statistics on a list of 200,000 servers.
Even if these tools give an insight into the HTTPS ecosystem,
they do not represent a usable dataset as is.

E. 2012: the Internet Census

In March 2013, an independent researcher published results
on an Internet-wide scan on multiple ports in 2012 [3]. To
complete this so-called Internet Census, the researcher took
control of open embedded devices accross the Internet6 and
used them as a botnet to probe the Internet. The collected data
(600 GB of compressed data, 9 TB uncompressed) were made
public via BitTorrent.

Concerning TLS data, we observed that the answers were
truncated well before the end of the first server flight, making
it impossible to get relevant data in an homogeneous way.
Moreover, on top of the obvious unethetical aspect of the ap-
proach, it was shown that the data, though apparently authentic,
“suffered from qualitative problems such as methodological
flaws or lack of metadata” [14].

F. 2013-2015: ZMap and ZGrab

Since 2013, several tools have been published to lead
Internet-scale scans, like ZMap [7], an asynchronous scanner
relying on SYN-cookie to track answers to given probes. Such
tools allow for scanning the Internet very quickly (in a matter
of minutes or hours), which may lead to data loss; the usual

5https://www.ssllabs.com/ssltest/
6Many online devices expose administration interfaces with default pass-

words, and the attacker/researcher could easily take control of them.

3



Full IPv4 Hostname-based Passive analysis
HTTPS servers coverage Nearly 100 % Subset of Subset of

named sites visited sites
TLS features coverage (typical number
of stimuli)

Limited (10) Large (100) Uncontrolled

User representativeness No Mostly Fully
Network invasiveness Important Moderate None
SNI-awareness No Yes Partial
Examples of campaign [8], [17], [7] [15], [13] [12]

TABLE I. COMPARISON OF THE DIFFERENT METHODS TO COLLECT HTTPS DATA.

countermeasures are to randomize the adress space and to
reemit packets.

In particular, Durumeric et al. used ZMap and other tools
to analyse the HTTPS certificate ecosystem in 2013 [6].
They estimate the packet loss in the scanning phase at 2 %,
which they compensate by keeping the IP addresses accross
campaigns (they launched 110 campaigns over 14 months).

For our study, we considered two of the recurring datasets
provided by Durumeric et al.: the Top Alexa 1M scans and
the full IPv4 campaigns, both on the 443/tcp port and with
TLS 1.2 ClientHello.

G. 2016: multiple stimuli with SNI

In August 2016, we realised several scans using domain
names coming from the Top Alexa 1M list with stimuli used
by the Firefox browser and other less common stimuli crafted
using the scapy TLS implementation [2]. In September 2016,
we reproduced the experiment on the .fr zone, as provided
by the Afnic registry.

For these campaigns, we first resolve the domain names. In
case of a resolution failure, a second attempt is made with the
www. prefix. We thus obtain 99 % of unique IPv4 addresses
virtually hosting less than 100 domains each. However, some
IP addresses are shared by a large quantity of domains (some-
times more than 100,000). In this case, we take a random
sample of only 10 domains.

Then, for each stimulus, we perform an HTTPS
scan on every retained domains using a tool called
probe_server [16]. The program specifies the requested
virtual host via the SNI extension by dynamically adapting
the stimulus. Finally, the answers are written as received, even
in case of non TLS compliant responses, in a dedicated binary
format for latter analysis with concerto.

These campaigns were initiated from an Autonomous Sys-
tem and an IPv4 prefix dedicated and documented in the
Internet Routing Registries for Internet measurements. The
bandwidth was closely monitored to ensure no data loss.

H. Summary

Table II summarizes the studied campaigns and their prop-
erties. To be able to do reproducible analyses and to confront
the state of the TLS ecosystem between different points in
time, the data collection must follow certain rules. First, as
shown in [12], the connections must be issued from a unique
source using a well-defined and stable stimulus (it was not the
case in the Internet Census 2012).

For entire IPv4 measures, it is important to find an ac-
ceptable trade-off between the duration of the campaign and
the packet loss. As the time spent acquiring the data (the
exposure time) increases, more IP addresses can appear or
disappear during the campaign: we would prefer this time to
be as short as possible. On the contrary, sending too many
packets can overload some network links or trigger alarms,
leading to dropped packets. Early campaigns usually spanned
their measures accross two to three weeks, but more recent
datasets tend to choose shorter exposure time (around 1 day).
To accomodate packet loss, it is necessary to randomize the
IPs; it is also possible to send multiple SYN packets or to
remember past results in case of recurrent measures.

With such guarantees on the collection phase, we can work
on the data (the messages sent by the servers). Usually, we will
also need the following metadata:

• the ClientHello message used as stimulus for the
campaign, to check the conformance7 and the quality
of the server answer;

• the timestamp of each answer, to validate the certifi-
cate at retrieval time;

• one (or several) certificate store(s) to check the validity
of the certificate chain against a given configuration.

V. CONCERTO : REPRODUCIBLE ANALYSES OF TLS
DATASETS

Armed with different datasets, we propose a modular
methodology to allow for reproducible analyses. Our goal is
to feed a database with the data and the relevant metadata to
produce statistics and to allow for finer-grain requests.

The different phases of our methodology are the following
(appendix A pictorially describes the cinematics of our tools):
context preparation, answer injection, certificate analysis and
statistics computation.

A. Context preparation

Two simple tools are used to make the database
aware of the campaign context: injectStimulus and
injectCerts.

The first one documents the versions, ciphersuites and
extensions proposed by the client during the campaign. It will
allow us to spot anomalies as those described in [17], i.e. when
a server chooses a ciphersuite that was not proposed.

7Strange as it may seem, some servers, presented with an impossible choice
of ciphersuites, will choose a ciphersuite that was not proposed by the client.

4



Campaign type Date Available Retained
EFF [8] 1 2010 yes yes

Holz et al. [12] 1 + 2 + 3 2011 partially no
our IPv4 campaigns [17] 1 2010, 2011 and 2014 privately yes

SSLPulse [15] 2 recurring since 2012 no no
Internet Census [3] ? 2012 yes no

Durumeric et al. [7], [6] 1 + 2 recurring since 2013 yes yes
our SNI campaigns 2 2016 yes yes

TABLE II. CAMPAIGN DESCRIPTION. TYPES ARE 1 FOR FULL IPV4 CAMPAIGNS, 2 FOR HOSTNAME-BASED SCANS AND 3 FOR PASSIVE ANALYSES;
THE LAST COLUMN INDICATES THE STUDIED DATASETS.

The second tool is the first step allowing to flag certificates,
chains and ultimately hosts with a certificate store. Before
checking that a given host is trusted according to a certificate
store, we need to make sure the corresponding certificates are
loaded.

In some cases, it may be useful to compare campaigns
using the same certificate store at different times. For example,
Mozilla products use the certificate store from the NSS library.
We wrote some scripts to extract the trusted certificates from
NSS source.

B. Answer injection

Here, the goal is to process the bulk data to extract the
relevant data for each host (which can be identified by a
domain name or an IP). First, we need to characterize the
answer type (non-TLS contents, SSL/TLS alerts or SSL/TLS
Handshake messages). Depending on this type, we may gather
more information: protocol version, alert type, chosen cipher-
suite, certificate chains.

Of course, this step will be different for each dataset. For
EFF datasets, we had to parse the messages sent by each
server with the injectAnswerDump tool; actually, we could
reuse the same tools for the datasets used in [17] that the
authors shared with us. On the contrary, for ZGrab results
obtained from scans.io, we had to write a different tool,
injectZGrabResults to process the compressed custom
JSON format (where the messages had already been parsed).

Finally, this step produces an answers table containing
one line per host, a chains table with unique certificate
chains and the set of all unique certificates collected for the
given campagin in raw format. If the context information
about the ClientHello used for the considered campaign
is present, injectAnswerDump can also use it to enrich
answers and flag inconsistencies.

C. Certificate analysis

In this step, we first parse all certificates with
parseCerts to extract relevant information such as public
keys, distinguished names and some extensions.

Then, we build and check all the existing links, i.e. the
list of (s, i) couples where s is a certificate signed by i.
This operation, led by prepareLinks and checkLinks,
is the most expensive operation, since it considers all the
available certificates, with no regard to their origin. The reason
we use two different tools is that the second step, checking
cryptographic signatures, can be parallelized, whereas the first
program only quickly enumerates all possible links based on
distinguished names and extensions.

Next, we build all possible chains from the certificate
chains presented by the servers in their TLS Certificate
message. The idea is to start from the server certificate, and
to try every possible certificate path using the previously
computed links. As a matter of fact, with real-world data,
the number of possible chains can be huge because of cross-
certification between authorities. That is why we introduced a
parameter, max-transvalid in our algorithm, to limit the
number of out-of-sent-chain certificates that can be used while
building a chain8.

Following the validated links, flagTrust starts from
trusted certificates to recursively flag trusted certificates and
trusted chains. It is possible to call flagTrust several times
with different trust stores.

Finally, rateChains takes into account the previous
information (e.g. the order of the chain, the presence of unused
certificates and the trust flag) to grade the built chains.

D. Statistics computation

With all the computed tables, we are finally able to produce
statistics on whole campaigns, such as the preferred cipher-
suites for a given ClientHello, the proportion of servers
supporting TLS 1.2, or the quality of certificate chains sent by
servers. The advantage of our toolset is that these statistics can
easily be computed in a reproducible way on diverse datasets,
which is obviously interesting with recurring campaigns such
as those published on the scans.io website. Moreover, the
flexibility provided by our trust flags allows for finer-grained
statistics on restricted subsets, e.g. hosts presenting an trusted
chain or hosts presenting an RFC-compliant certificate chain.

E. Typical figures

Our toolset is made of programs written in OCaml, Python
or Shell, that work on a shared directory containing the
database. In practice, the processed data is stored into simple
(but sometimes huge) CSV files. It would be interesting to
experiment with other backends, yet this does not seem neces-
sary at this point. Indeed, we only have two ways of processing
data in our tools: either we process them one row at a time
(e.g. to check possible links) or we need to load the whole
table to build a graph (e.g. to enumerate all possible links). In
both cases, CSV files suit our needs. Figure 3 presents typical
figures for a single-stimulus full IPv4 campaign.

8This number does not include the root certificate that may legitimately be
omitted.

5



Table N rows Size
answers.csv 40 M 4 GB
chains.csv 20 M 2 GB
parsed_certs.csv 10 M 6 GB
links.csv 14 M 1 GB
built_chains.csv 120 M 12 GB
trusted_certs.csv 6 M 300 MB
trusted_chains.csv 9 M 450 MB

Binary contents N Size
raw certificates 10 M 10 GB

Fig. 3. Some figures regarding a typical full IPv4 campaign.

VI. CHALLENGES

A. Handling X.509v1 certificates

The initial version of the X.509 standard did not include
extensions. Since extensions are now used to indicate the fact
that a given certificate is a certificate authority (CA), X.509v1
certificate used to be implicitly trusted as CAs. Nowadays,
trusted roots do not emit such certificates anymore, but trusted
roots themselves sometimes still use the old format.

In an early version of concerto, we considered all
X.509v1 certificates as CAs. Yet, this led to a huge combi-
natorial explosion with several classes of certificates: some
appliances or virtual machine management engines produce
unique X.509v1 certificates for each equipment or instance,
with the same subject and the same issuer. Though, with
X.509v1 certificates, as we can not rely on extensions such
as SubjectKeyIdentifier and AuthorityKeyIdentifier to remove
irrelevant possible links to check, the mere presence of n of
such appliances would trigger n2 certificate pairs to check.

For example, a full IPv4 campaign contains around 1.2
million X.509v1 distinct certificates. Among those, we observe
certificate clusters, where the subject and issuer fields are the
same for all certificates. The biggest one contain more than
140,000 distinct certificates.

To avoid having to check such an amount of bogus links,
we decided to only consider as CAs the X.509v1 certificates
included in the trusted roots, that is a dozen certificates. This
reproduces the behaviour of modern TLS stacks.

B. Tuning the max-transvalid parameter

During our study, we observed that the
max-transvalid parameter (the number of out-of-
sent-chain certificates to use when building possible certificate
chains) could lead to large tables. On the contrary, using a
small value makes us miss several built chains. In practice, the
only programs relying on those built chains are rateChains
and computeChainsStats, the tools computing statistics
on chain quality.

To assess the impact of the parameter on chain quality
statistics, we experimented with max-transvalid values
from 1 to 6 on a /8 prefix: we confronted the chain quality
analysis to assess the loss of precision. For 1 to 3 values, the
number of incomplete chains decreases while the number of
transvalid chains increases; after 3, the results does not evolve
anymore up to the last value we computed. To avoid producing

too much data while avoiding missing too much built chains,
we chose to use 3 as our max-transvalid parameter for
all further analyses concerning chain quality.

C. Complete view of certificate ecosystem

In order to not overload the servers hosting many domains,
we have decided to probe only a sample of 10 domains on these
servers. This is enough for analysing the answers but not to
get a complete view of the available certificates. Among the
servers hosting more than 100 domains in the .fr zone file
and returning a valid TLS answer, 71 % of them seem to
always provide the same certificate. The rest (29 % of these
highly mutualised servers) take the SNI extension into account
and serve different certificates for different domain names.
Most of the certificates hosted on these SNI-aware servers are
issued by Let’s encrypt. Thus one way to solve this issue would
be to retrieve additional certificates from another source such
as Certificate Transparency repositories.

A dedicated tool, injectCT, was thus recently added to
the concerto tool suite in order to load certificates recorded
in Certificate Transparency, and might provide interesting
future results.

VII. SOME RESULTS

concerto has enabled us to produce several figures
concerning the available datasets. The main goal of this section
is to show some of the offered possibilities.

A. Big picture

To test our approach, we considered several datasets,
marked as retained in table II. For each of them, we used
the NSS trust store that was in the source code during the
considered scan.

Table III describes the number of hosts with an open
443/tcp port, and the proportion of TLS answer types in
each campaign9. There seems to be significant differences
between the EFF campaigns and the other datasets. This can be
explained by the fact that the SYN scan was first completed be-
fore mounting TLS sessions, several weeks later; in the mean-
time, dynamic IP addresses would have moved. Moreover, it
seems the SYN scan was not repeated in December. Finally,
the results show that some post-processing was made before
publishing the results, to eliminate most of non-TLS hosts. If
we look at the other datasets, we observe that the number of
TLS-speaking hosts on port 443 is growing. The recent trend to
favor HTTPS where possible may be in response to revelations
concerning pervasive network monitoring [10].

As stated in section IV-G, the using of SNI extensions for
our 2016 .fr scans, along with the observed concentration of
many hosts over a few IP addresses, prompted us to query only
10 arbitrary domains per IP fronting 100 domains or more. As
such, comparisons between this campaign and the previous,
exhaustive ones do not seem appropriate. Still, it remains of
some interest to note that, with the same stimulus, only 0.6%
of the IP addresses exhibited strictly more than one answer
type over the different domains they hosted.

9For multi-stimuli campaigns, we selected a standard stimuli for this table.

6



Campaign N hosts with TLS answers
Date Source open port

Full IPv4 campaigns (1 host = 1 IP)
2010/07 [17] 21,342,205 9,854,653 (46 %)
2010/08 EFF 15,665,414 11,476,107 (73 %)
2010/12 EFF 7,777,511 7,706,123 (99 %)
2011/07 [17] 26,218,630 11,355,060 (43 %)
2014/03 [17] 40,126,218 29,055,642 (72 %)
2015/08 scans.io 46,231,300 34,087,781 (74 %)
Top Alexa 1 Million campaigns (1 host = 1 domain name)
2015/08 scans.io 684,365 357,282 (52 %)
2016/08 Our scans 676,024 604,529 (89 %)

TABLE III. PROPORTION OF TLS ANSWERS FOR EACH CAMPAIGN. TA
STANDS FOR TOP ALEXA 1M, AND FR FOR THE .FR DNS ZONE.

Fig. 5. Proportion of TLS/trusted hosts supporting secure renegotiation.

B. Trends concerning TLS parameters

TLS 1.2 support: In our datasets, we use TLS 1.2 stimuli
in 2011, 2014, 2015 and 2016. Figure 4 present the protocol
version chosen by TLS and Trusted hosts for each of the
relevant IPv4 campaigns. The figures show that TLS 1.2
support went from almost non-existent in 2011 to a majority
of servers among trusted hosts in 2016.

RFC 5746 support: Another simple trend to identify using
concerto relates to the proportion of servers supporting
secure renegotiation among Top Alexa 1M servers. For ex-
ample, we downloaded monthly ZGrab results for February
to August 2016 and ran our toolsets to extract information
about RFC 5746 support (the secure renegotiation extension).
Figure 5 contains the results.

C. Some figures about certificates

Looking at 2010, 2011, 2014 and 2015 full IPv4 cam-
paigns, we could produce some statistics on certificates, pre-
sented in table IV. We first count unique certificates for each
selected campaign. Then for 2010/2011 and 2014/2015, we
count the number of common certificates within a one-year
period.

2010 2011 2014 2015
N unique certificates 4,772,324 5,332,427 9,939,328 10,785,323
Common certificates 1,995,691 3,299,539

Proportion of common certs 42 % 37 % 33 % 30 %

TABLE IV. NUMBER OF UNIQUE CERTIFICATES ACROSS CAMPAIGNS.

Chain robustness: For all the full IPv4 campaigns we
considered, certificate chains overwhelmingly contained only
RSA keys. We thus focus on the RSA-only certificate chains
and we consider the following criterion: the minimum length
of all the moduli in the certificate chain. We call this the chain
robustness. Figure 6 represent the repartition of said robustness
for the studied campaigns.

The median robustness went from 1024 bit to 2048 between
2010 and 2015. For trusted hosts, it is also true for the first

quartile. This means that 2048 bit has finally become the new
standard. The change was a little quicker for trusted hosts,
probably because the CA/Browser Forum required Extended
Validation certificates to be at least 2048 bit long since
December 2010.

For all the considered campaigns, the maximum key ro-
bustness was 16384 bit for TLS hosts and 4096 bit for trusted
hosts.

It is however worrying that the minimum key robustness
was 512 until 2014 for trusted hosts (it was 384 until 2014 for
TLS hosts). Even if the situation improved in 2015, where the
minimum was 1024 bit, such weak RSA keys should never be
used today.

Statistics on incomplete/unordered chains: In section II-B,
we saw how chains are supposed to be sent in Certificate
messages. Yet, for various reasons, certificates are not always
ordered, and some links may even be absent.

Table 7 presents proportion of RFC-compliant, unordered
and incomplete chains encountered in different full IPv4 cam-
paigns. We also refined our analysis by restricting the statistics
to trusted hosts. For both subsets, it seems unordered chains
are becoming more common, which can be explained by server
certificates linking to multiple trust anchors.

Further results with Neo4j: While we used several custom
scripts to produce the previous results, storing the processed
data into CSV files also allows for easy importing into third-
party applications. We were quickly able to feed selected
metadata from the answers of a TLS campaign into a Neo4j
graph database. Our goal was to produce additional results
through Cypher queries. As a graph-oriented query language,
it seemed like a natural candidate for certificate chains probing.

Following simple cut operations which isolated the rele-
vant columns from the CSV answers, chains and certificates
produced from one of our Top Alexa 1M scans, we build
the nodes and relationships of a new Neo4j database. Using
the provided neo4j-import tool with standard processing
capacities, the whole operation takes no more than 20 seconds.
We proceed in creating an index on the certificate hashes.

We present two results among several one-liner queries,
which demonstrate the usefulness of Neo4j. Table V displays
the reuse rate of server certificates over the subset of 602,875
hosts which presented a TLS Certificate message: the
most reused certificate is thus presented on almost 9,000
domain names. From the same campaign, table VI shows the
prevalent CAs for the issuance of the 298,985 distinct non-
self-signed leaf certificates.

D. Study of some intolerances

When sending TLS ClientHellos, one would expect
the sum of hosts answering with alert and handshake mes-
sages to stay unchanged across stimuli. Yet, we observed
that under circumstances such as TLS 1.2 ClientHellos,
several servers seem to panic and either abort the connection
abruptly, or answer with an irregular ServerHello (e.g.
with a cipher suite that was not advertised in the first place).
This phenomenon is designated as server intolerance.

7



TLS hosts

SSLv3

TLS 1.0

TLS 1.1

TLS 1.2

98 %

2011

67 %

30 %

2014

49 %

47 %

2015
Full IPv4

24 %

76 %

2015

13 %

87 %

2016
TA 1M

Trusted hosts

100 %

2011

46 %

53 %

2014

27 %

73 %

2015
Full IPv4

22 %

77 %

2015

11 %

89 %

2016
TA 1M

Fig. 4. Evolution of the protocol versions chosen by the servers (for TLS and trusted hosts).

5 %

25 %

50 %

75 %

95 %

0 %

100 %

512 bits

1024 bits

1536 bits

2048 bits

TLS hosts

2010 2011 2014 2015

512 bits

1024 bits

1536 bits

2048 bits

Trusted hosts

2010 2011 2014 2015

Fig. 6. Evolution of the RSA key robustness (in bits) in certificate chains between 2010 and 2015. The box plot shows different percentiles for the value
repartition, and the line represents the mean value for each campaign. In some cases, the maximum value is off-chart and is not represented.

TLS hosts

Incomplete

Transvalid

Unordered

RFC Compliant

37 %

58 %

2010

39 %

55 %

2011

35 %

11 %

51 %

2014

34 %

13 %

50 %

2015

Trusted hosts

87 %

2010

12 %

86 %

2011

27 %

68 %

2014

28 %

69 %

2015

Fig. 7. Quality of chains over time (for TLS and trusted hosts).

8



Certificate subject Representation
/OU=Domain Control Validated/OU=Hosted by HostGator.com, LLC./OU=PositiveSSL Wildcard/CN=*.hostgator.com 1.44 %
/OU=Domain Control Validated/OU=Hosted by BlueHost.Com, INC/OU=PositiveSSL Wildcard/CN=*.bluehost.com 0.78 %
/OU=Domain Control Validated/OU=CoreSSL DV Wildcard/CN=*.xserver.jp 0.77 %
/C=US/S=California/L=Mountain View/O=Google Inc/CN=misc-sni.blogspot.com 0.76 %
/C=US/S=New York/L=New York/O=Tumblr Inc./CN=*.tumblr.com 0.73 %
/OU=Domain Control Validated/OU=PositiveSSL Wildcard/CN=*.webhostbox.net 0.72 %
/OU=GT90704249/OU=See www.rapidssl.com/resources/cps (c)14/OU=Domain Control Validated - RapidSSL(R)/CN=*.sakura.ne.j p 0.61 %
/CN=*.wpengine.com 0.57 %
/C=US/S=California/L=Mountain View/O=Google Inc/CN=*.googleusercontent.com 0.50 %

TABLE V. UNIQUE SERVER CERTIFICATE REUSE OVER A TOP ALEXA 1M CAMPAIGN ON 2016/08/01.

Certificate subject Representation
/C=GB/S=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=COMODO ECC Domain Validation Secure Server CA 2 14.9 %
/C=GB/S=Greater Manchester/L=Salford/O=COMODO CA Limited/CN=COMODO RSA Domain Validation Secure Server CA 14.0 %
/C=US/S=Arizona/L=Scottsdale/O=GoDaddy.com, Inc./OU=http://certs.godaddy.com/repository//CN=Go Daddy Secure Certificate Authority - G2 9.6 %
/C=US/O=Let’s Encrypt/CN=Let’s Encrypt Authority X3 6.7 %
/C=US/O=GeoTrust Inc./CN=RapidSSL SHA256 CA - G3 6.0 %
/C=US/S=TX/L=Houston/O=cPanel, Inc./CN=cPanel, Inc. Certification Authority 4.0 %
/C=BE/O=GlobalSign nv-sa/CN=AlphaSSL CA - SHA256 - G2 2.9 %
/C=US/O=GeoTrust Inc./CN=RapidSSL SHA256 CA 2.9 %
/C=US/O=Symantec Corporation/OU=Symantec Trust Network/CN=Symantec Class 3 Secure Server CA - G4 2.8 %

TABLE VI. LEAF-SIGNING CERTIFICATES MARKET SHARE OVER A TOP ALEXA 1M CAMPAIGN ON 2016/08/01.

Table VII shows intolerance to the TLS 1.2 versions in the
2014 full IPv4, whereas table VIII describes server intolerance
to a PFS-only stimulus, that was added for the 2016 Top
Alexa 1M campaign.

TLS Trusted
Compatible Handshake 99.2 % 99.4 %
Alert 0.1 % 0.1 %
Intolerant servers 0.7 % 0.5 %

TABLE VII. SERVER INTOLERANCE TO A TLS 1.2 STIMULUS IN THE
2014 FULL IPV4 CAMPAIGN.

TLS Trusted
Compatible Handshake 93.3 % 92.8 %
Alert 3.6 % 3.8 %
Intolerant servers 3.1 % 3.4 %

TABLE VIII. SERVER INTOLERANCE TO A PFS-ONLY STIMULUS IN
THE 2016 TOP ALEXA 1M CAMPAIGN.

E. DROWN

Using multiple stimuli is also useful to spot hosts vulnera-
ble to the DROWN attacks. First, using an SSLv2 stimulus, we
can flag all the server certificates that are presented by a server
still accepting the obsolete protocol version. Then, we can
count the number of servers presenting a flagged certificate.
These are vulnerable to DROWN, since there exists an SSLv2
server using the same certificate that an attacker can mount
the attack against.

For multi-stimuli, full IPv4 campaigns, we thus get 55 %
of vulnerable servers (57 % among trusted servers) in 2011
and 46 % of vulnerable servers (40 % among trusted servers)
in 2014. With our most recent multi-stimuli campaigns run on
Top Alexa 1 Million servers in 2016, the situation is better:
6.6 % of overall vulnerable servers (and 5.2 % for trusted
hosts).

It is however important to notice that these figures, however
alarming, are still an understatement for two reasons: first,
we did not look at shared RSA public keys across different
certificates (which should have a minor impact); last and not

least, we did not take into account other secure protocols such
as SMTPS, where RSA certificates are often reused, and where
SSLv2 is still very common.

VIII. CONCLUSION

Since 2011, SSL/TLS has received a lot of attention, which
has led the community to discover several flaws. In parallel,
several efforts have led researchers to launch campaigns to
better know the actual state of TLS deployment. Today, such
datasets are ubiquitous and easily available, but it is not that
easy to study them in a reproducible and uniform way.

With concerto, our goal was to be able to reproduce
previous analyses, and to provide a sound methodology to
assess the quality of TLS deployment in the wild. In this
article, we presented several datasets we could study, and tried
our approach on them. We could analyse these campaigns
and easily reproduce several indicators accross different cam-
paigns.

One of the major advantages of using many small tools
is the flexibility regarding trust stores: using flagTrust
once the data has been inserted and processed allows us to
quickly check for the dependency of several IPs on a given
set of trusted certificates. We believe concerto could also be
used to produce efficient differential analysis regarding some
indicators, as was shown with the RFC 5746 support example.

concerto has been publicly released as open source
software10. Future work concerning concerto will be to
improve backend efficiency and better handle new kinds of
datasets such as Certificate Transparency logs. Another useful
improvement would be to add revocation information to the
database.

10https://github.com/ANSSI-FR/concerto

9



REFERENCES

[1] D. E. 3rd, “Transport Layer Security (TLS) Extensions: Extension
Definitions,” RFC 6066 (Proposed Standard), Internet Engineering Task
Force, Jan. 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6066.txt

[2] P. Biondi and the Scapy community, “Scapy,” http://www.secdev.org/
projects/scapy/, 2003-2016. [Online]. Available: http://www.secdev.org/
projects/scapy/

[3] C. Botnet, “Internet Census 2012: Port scanning /0 using insecure
embedded devices,” http://internetcensus2012.bitbucket.org/paper.html,
2012. [Online]. Available: http://internetcensus2012.bitbucket.org/paper.
html

[4] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008, updated by RFCs 5746,
5878, 6176, 7465, 7507, 7568, 7627, 7685. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

[5] T. Duong and J. Rizzo, “Here come the XOR ninjas,” Ekoparty Security
Conference, Sep. 2011.

[6] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the HTTPS certificate ecosystem,” in Proceedings of the 2013 Internet
Measurement Conference, IMC 2013, Barcelona, Spain, Oct. 2013, pp.
291–304.

[7] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-
wide Scanning and Its Security Applications,” in Proceedings of the
22th USENIX Security Symposium, Washington, DC, USA, Aug. 2013,
pp. 605–620.

[8] P. Eckerseley and J. Burns, “An Observatory for the SSLiverse,” Defcon
18, Aug. 2010.

[9] ——, “Is the SSLiverse a safe place?” 27. Chaos Communication
Congress, Dec. 2010.

[10] S. Farrell and H. Tschofenig, “Pervasive Monitoring Is an Attack,”
RFC 7258 (Best Current Practice), Internet Engineering Task Force,
May 2014. [Online]. Available: http://www.ietf.org/rfc/rfc7258.txt

[11] P. Hoffman and J. Schlyter, “The DNS-Based Authentication of
Named Entities (DANE) Transport Layer Security (TLS) Protocol:
TLSA,” RFC 6698 (Proposed Standard), Internet Engineering Task
Force, Aug. 2012, updated by RFCs 7218, 7671. [Online]. Available:
http://www.ietf.org/rfc/rfc6698.txt

[12] R. Holz, L. Braun, N. Kammenhuber, and G. Carle, “The SSL land-
scape: a thorough analysis of the x.509 PKI using active and passive
measurements,” in Proceedings of the 11th ACM SIGCOMM Internet
Measurement Conference, IMC ’11, Berlin, Germany, Nov. 2011, pp.
427–444.

[13] H. Kario, “Security Pitfalls: Monthly Scan Results,” https:
//securitypitfalls.wordpress.com/, 2014-2015. [Online]. Available:
https://securitypitfalls.wordpress.com/

[14] T. Krenc, O. Hohlfeld, and A. Feldmann, “An internet census taken by
an illegal botnet: a qualitative assessment of published measurements,”
Computer Communication Review, vol. 44, no. 3, pp. 103–111, 2014.

[15] S. Labs, “SSL Pulse: Survey of the SSL Implementation of the Most
Popular Web Sites,” https://www.trustworthyinternet.org/ssl-pulse/,
2012-2015. [Online]. Available: https://www.trustworthyinternet.org/
ssl-pulse/

[16] O. Levillain, “Parsifal: A Pragmatic Solution to the Binary Parsing
Problems,” in 35. IEEE Security and Privacy Workshops, SPW 2014,
San Jose, CA, USA, May 2014, pp. 191–197.

[17] O. Levillain, A. Ébalard, B. Morin, and H. Debar, “One Year of SSL
Internet Measurement,” in 28th Annual Computer Security Applications
Conference, ACSAC 2012, Orlando, FL, USA, Dec. 2012, pp. 11–20.

[18] B. Möller, T. Duong, and K. Kotowicz, “Google Security Advisory:
This POODLE Bites - Exploiting The SSL 3.0 Fallback,” http://
www.openssl.org/~bodo/ssl-poodle.pdf, Sep. 2014. [Online]. Available:
http://www.openssl.org/~bodo/ssl-poodle.pdf

[19] I. Ristic, “Internet SSL Survey,” Black Hat USA, Aug. 2010.

APPENDIX

A. Tool cinematics

In the following figures, the database tables are represented
by grey parallelograms, programs by rectangles and binary
files by circles (grey ones correspond to binary data inside
the database).

Figure 8 presents the overall process to inject data, analyse
them and produce some statistics, assuming that we use
the NSS trust store at validation time and that we know
the ClientHello message sent. This was essentially the
standard process we applied to all the campaigns studied.

hg checkout --date

certdata.txt

extract-certdata

Trusted
certificates

injectStimulus

stimuli* tables

injectCerts

certs

injectCT

chains

injectAnswerDump

answersparseCerts

certs

checkLinks

links

buildChains

built_chainsbuilt_links

flagTrust

trusted_certs trusted_chains

computeStats

stats* tables

answer
dumps

ClientHello
message

timestamp

Certificate
Transparency

Fig. 8. Simplified version of the overall process for a typical campaign.

10


