
Mind your Language(s)!
A discussion about languages and

security
Éric Jaeger & Olivier Levillain & Pierre Chifflier

High Integrity Software Conference, 2014-10-23

ANSSI

ANSSI (French Network and Information Security Agency) has InfoSec
(and no Intelligence) missions:

I detect and early react to cyber attacks

I prevent threats by supporting the development of trusted products
and services

I provide reliable advice and support

I communicate on information security threats and the related means
of protection

These missions concern:

I governmental entities

I companies

I the general public

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! 2/29

Foreword

What this presentation is about

I the impact of the language on security properties is understudied

I it covers a broad spectrum of subjects

I since 2005, two studies: JavaSec and LaFoSec

I each time, our partners did not at first share (or even understand)
our concerns

I the following examples do not aim at criticising particular languages

I no language was harmed during our work1

1They were already like that when we began.
Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! 3/29

Outline

1 Illustrations

2 About assurance

3 Lessons learned

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations 4/29

Outline

1 Illustrations
Encapsulation
Types, casts and overloading
Side effects
No comments
From source code to execution

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Encapsulation) 5/29

[Java] Objection

Object encapsulation: a security mechanism?

Source (java/Introspect.java)

import java.lang.reflect .*;

class Secret { private int x = 42; }

public class Introspect {

public static void main (String [] args) {

try { Secret o = new Secret ();

Class c = o.getClass ();

Field f = c.getDeclaredField ("x");

f.setAccessible(true);

System.out.println ("x="+f.getInt(o));

}

catch (Exception e) { System.out.println(e); }

}

}

I Some keywords may be confusing
I Even if possible, introspection cannot easily be banned in practice

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Encapsulation) 6/29

[OCaml] The danger of < 1/2

OCaml also has encapsulation mechanisms: modules

Source (ocaml/hsm.ml)

module type Crypto = sig val id:int end;;

module C : Crypto =

struct

let id=Random.self_init (); Random.int 8192

let key=Random.self_init (); Random.int 8192

end;;

It is a sealed box, where id is visible, but not key

C.id returns - : int = 2570

C.key returns Error: Unbound value C.key

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Encapsulation) 7/29

[OCaml] The danger of < 2/2

Yet this encapsulation is not robust, since the box can be compared on a
weighing scale

Source (ocaml/hsmoracle.ml)

let rec oracle o1 o2 =

let o = (o1 + o2)/2 in

let module O = struct let id=C.id let key=o end in

if (module O:Crypto)>(module C:Crypto)

then oracle o1 o

else (if (module O:Crypto) <(module C:Crypto)

then oracle o o2

else o);;

oracle 0 8192;;

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Encapsulation) 8/29

Outline

1 Illustrations
Encapsulation
Types, casts and overloading
Side effects
No comments
From source code to execution

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 9/29

[Shell] True, False, FILE NOT FOUND 1/2

How many values a boolean condition (e.g. x=y) can take?

Source (shell/login.sh)

#!/ bin/bash

PIN =1234

echo -n "Please type your PIN code (4 digits): "

read -s PIN_TYPED; echo

if ["$PIN" -ne "$PIN_TYPED"]; then

echo "Invalid PIN code ."; exit 1

else

echo "Authentication OK"; exit 0

fi

In shell, the following excerpt shows a third option should be treated. A
bad PIN will be rejected, but ”foo” will be accepted

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 10/29

[Shell] True, False, FILE NOT FOUND 1/2

How many values a boolean condition (e.g. x=y) can take?

Source (shell/login.sh)

#!/ bin/bash

PIN =1234

echo -n "Please type your PIN code (4 digits): "

read -s PIN_TYPED; echo

if ["$PIN" -ne "$PIN_TYPED"]; then

echo "Invalid PIN code ."; exit 1

else

echo "Authentication OK"; exit 0

fi

In shell, the following excerpt shows a third option should be treated. A
bad PIN will be rejected, but ”foo” will be accepted

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 10/29

[C] True, False, FILE NOT FOUND 2/2

A recent vulnerability on GnuTLS may now sound familiar (March 2014,
lwn.net)

But this bug is arguably much worse than Apple’s, as it has
allowed crafted certificates to evade validation check for all
versions of GnuTLS ever released since that project got started
in late 2000.[...]
The check_if_ca function is supposed to return true (any non-zero
value in C) or false (zero) depending on whether the issuer of
the certificate is a certificate authority (CA). A true return
should mean that the certificate passed muster and can be used
further, but the bug meant that error returns were
misinterpreted as certificate validations.

The same flaw was pre-existant in OpenSSL... in 2008

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 11/29

lwn.net

[C] True, False, FILE NOT FOUND 2/2

A recent vulnerability on GnuTLS may now sound familiar (March 2014,
lwn.net)

But this bug is arguably much worse than Apple’s, as it has
allowed crafted certificates to evade validation check for all
versions of GnuTLS ever released since that project got started
in late 2000.[...]
The check_if_ca function is supposed to return true (any non-zero
value in C) or false (zero) depending on whether the issuer of
the certificate is a certificate authority (CA). A true return
should mean that the certificate passed muster and can be used
further, but the bug meant that error returns were
misinterpreted as certificate validations.

The same flaw was pre-existant in OpenSSL... in 2008

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 11/29

lwn.net

[JavaScript] Castastrophe

Source (js/cast2.js)

if (’0’==0) print (" ’0 ’==0");

else print("’0’<>0");

if (0== ’0.0 ’) print ("0== ’0.0 ’");

else print ("0<>’0.0’");

if (’0’==’0.0’) print ("’0’==’0.0’");

else print("’0’<>’0.0’");

’0’==0, 0==’0.0’ and ’0’<>’0.0’

Source (js/cast3.js)

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 12/29

[JavaScript] Castastrophe

Source (js/cast2.js)

if (’0’==0) print (" ’0 ’==0");

else print("’0’<>0");

if (0== ’0.0 ’) print ("0== ’0.0 ’");

else print ("0<>’0.0’");

if (’0’==’0.0’) print ("’0’==’0.0’");

else print("’0’<>’0.0’");

’0’==0, 0==’0.0’ and ’0’<>’0.0’

Source (js/cast3.js)

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 12/29

[JavaScript] Castastrophe

Source (js/cast2.js)

if (’0’==0) print (" ’0 ’==0");

else print("’0’<>0");

if (0== ’0.0 ’) print ("0== ’0.0 ’");

else print ("0<>’0.0’");

if (’0’==’0.0’) print ("’0’==’0.0’");

else print("’0’<>’0.0’");

’0’==0, 0==’0.0’ and ’0’<>’0.0’

Source (js/cast3.js)

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 12/29

[JavaScript] Castastrophe

Source (js/cast2.js)

if (’0’==0) print (" ’0 ’==0");

else print("’0’<>0");

if (0== ’0.0 ’) print ("0== ’0.0 ’");

else print ("0<>’0.0’");

if (’0’==’0.0’) print ("’0’==’0.0’");

else print("’0’<>’0.0’");

’0’==0, 0==’0.0’ and ’0’<>’0.0’

Source (js/cast3.js)

a=1; b=2; c=’Foo ’;

print(a+b+c); print(c+a+b); print(c+(a+b));

3Foo, Foo12 and Foo3

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 12/29

[Php] Iconocast 1/2

Source (php/castincr.php)

$x="2d8"; print($x+1); print ("\n");

$x="2d8"; print (++$x."\n"); print (++$x."\n"); print (++$x."\n");

if ("0xF9 "=="249") { print(" Equal\n"); }

else { print(" Different\n"); }

The first line produces 3 (an int)

The second displays 2d9 (string), 2e0 (string) then 3 (float).

The third prints Equal

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 13/29

[Php] Iconocast 1/2

Source (php/castincr.php)

$x="2d8"; print($x+1); print ("\n");

$x="2d8"; print (++$x."\n"); print (++$x."\n"); print (++$x."\n");

if ("0xF9 "=="249") { print(" Equal\n"); }

else { print(" Different\n"); }

The first line produces 3 (an int)

The second displays 2d9 (string), 2e0 (string) then 3 (float).

The third prints Equal

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 13/29

[Php] Iconocast 1/2

Source (php/castincr.php)

$x="2d8"; print($x+1); print ("\n");

$x="2d8"; print (++$x."\n"); print (++$x."\n"); print (++$x."\n");

if ("0xF9 "=="249") { print(" Equal\n"); }

else { print(" Different\n"); }

The first line produces 3 (an int)

The second displays 2d9 (string), 2e0 (string) then 3 (float).

The third prints Equal

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 13/29

[Php] Iconocast 1/2

Source (php/castincr.php)

$x="2d8"; print($x+1); print ("\n");

$x="2d8"; print (++$x."\n"); print (++$x."\n"); print (++$x."\n");

if ("0xF9 "=="249") { print(" Equal\n"); }

else { print(" Different\n"); }

The first line produces 3 (an int)

The second displays 2d9 (string), 2e0 (string) then 3 (float).

The third prints Equal

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 13/29

[Php] Iconocast 2/2

This may lead to security concerns

Source (php/hash.php)

$s1=’QNKCDZO ’; $h1=md5($s1);

$s2 = ’240610708 ’; $h2=md5($s2);

$s3=’A169818202 ’; $h3=md5($s3);

$s4=’aaaaaaaaaaaumdozb ’; $h4=md5($s4);

$s5=’badthingsrealmlavznik ’; $h5=sha1($s5);

if ($h1==$h2) print (" Collision\n");

if ($h2==$h3) print (" Collision\n");

if ($h3==$h4) print (" Collision\n");

if ($h4==$h5) print (" Collision\n");

Collision is printed 4 times, but we did not break Md5 nor Sha1

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 14/29

[Php] Iconocast 2/2

This may lead to security concerns

Source (php/hash.php)

$s1=’QNKCDZO ’; $h1=md5($s1);

$s2 = ’240610708 ’; $h2=md5($s2);

$s3=’A169818202 ’; $h3=md5($s3);

$s4=’aaaaaaaaaaaumdozb ’; $h4=md5($s4);

$s5=’badthingsrealmlavznik ’; $h5=sha1($s5);

if ($h1==$h2) print (" Collision\n");

if ($h2==$h3) print (" Collision\n");

if ($h3==$h4) print (" Collision\n");

if ($h4==$h5) print (" Collision\n");

Collision is printed 4 times, but we did not break Md5 nor Sha1

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Types, casts and overloading) 14/29

Outline

1 Illustrations
Encapsulation
Types, casts and overloading
Side effects
No comments
From source code to execution

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Side effects) 15/29

[OCaml] Mutatis mutandis

In OCaml, code is static and strings are mutable. What about strings
appearing in code?

Source (ocaml/mutable.ml)

let check c =

if c then "OK" else "KO";;

let f=check false in

f.[0]<-’O’; f.[1]<-’K’;;

check true;;

check false;;

Both check calls return "OK"

Such mutable shared strings may be used to determine control flow, or to
escape characters (Char.escaped)

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Side effects) 16/29

[OCaml] Mutatis mutandis

In OCaml, code is static and strings are mutable. What about strings
appearing in code?

Source (ocaml/mutable.ml)

let check c =

if c then "OK" else "KO";;

let f=check false in

f.[0]<-’O’; f.[1]<-’K’;;

check true;;

check false;;

Both check calls return "OK"

Such mutable shared strings may be used to determine control flow, or to
escape characters (Char.escaped)

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Side effects) 16/29

[OCaml] Mutatis mutandis

In OCaml, code is static and strings are mutable. What about strings
appearing in code?

Source (ocaml/mutable.ml)

let check c =

if c then "OK" else "KO";;

let f=check false in

f.[0]<-’O’; f.[1]<-’K’;;

check true;;

check false;;

Both check calls return "OK"

Such mutable shared strings may be used to determine control flow, or to
escape characters (Char.escaped)

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Side effects) 16/29

[Python] Global variables

Python allows for comprehension lists, which is another syntax for a map

application

Source (python/listcomp.py)

>>> l = [s+1 for s in [1,2,3]]

>>> l

[2, 3, 4]

Now, what is the value of s?

Unless you use Python 3, s is 3, whereas the s variable should have been
local (bound).

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Side effects) 17/29

[Python] Global variables

Python allows for comprehension lists, which is another syntax for a map

application

Source (python/listcomp.py)

>>> l = [s+1 for s in [1,2,3]]

>>> l

[2, 3, 4]

Now, what is the value of s?

Unless you use Python 3, s is 3, whereas the s variable should have been
local (bound).

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (Side effects) 17/29

Outline

1 Illustrations
Encapsulation
Types, casts and overloading
Side effects
No comments
From source code to execution

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (No comments) 18/29

[C] No comments ?

Syntax matters...

Source (c/comments2.c)

#include <stdio.h>

int main(void) {

// /!\ DO NOT REMOVE COMMENTS IN NEXT BLOCK /!\

/**

const char status []=" Safe";

// /!\ SET TO SAFE ONLY FOR TESTS /!\

**/

// /!\ NEXT LINE REALLY IMPORTANT /!\

const char status []=" Unsafe ";

printf (" Status: %s\n",status);

}

I C trigrams
I UTF-8 characters / encoding allowed in Java

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (No comments) 19/29

Outline

1 Illustrations
Encapsulation
Types, casts and overloading
Side effects
No comments
From source code to execution

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (From source code to execution)
20/29

[C] Story of a real kernel bug

Source (c/badoptim.c)

struct tun_struct *tun = __tun_get(tfile);

struct sock *sk = tun ->sk;

if (!tun)

return POLLERR;

/* use *sk for write operations */

This particular undefined behavior led to an optimisation, which is now
known as CVE-2009-1897.

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (From source code to execution)
21/29

[Java] Serial killer

Source (java/Deserial.java)

import java.io.*;

class Friend { } // Unlikely to be dangerous!

class Deserial {

public static void main (String [] args)

throws FileNotFoundException , IOException ,

ClassNotFoundException {

FileInputStream fis = new FileInputStream (" friend ");

ObjectInputStream ois = new ObjectInputStream(fis);

Friend f=(Friend)ois.readObject ();

System.out.println (" Hello world ");

}

}

At runtime, we may read Bad things happen! since the serialised file
contained an object of a different class. The cast might fail, but it might
be too late.

Not controlling which code is run may be dangerous (CVE-2008-5353)

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (From source code to execution)
22/29

[Java] Serial killer

Source (java/Deserial.java)

import java.io.*;

class Friend { } // Unlikely to be dangerous!

class Deserial {

public static void main (String [] args)

throws FileNotFoundException , IOException ,

ClassNotFoundException {

FileInputStream fis = new FileInputStream (" friend ");

ObjectInputStream ois = new ObjectInputStream(fis);

Friend f=(Friend)ois.readObject ();

System.out.println (" Hello world ");

}

}

At runtime, we may read Bad things happen! since the serialised file
contained an object of a different class. The cast might fail, but it might
be too late.

Not controlling which code is run may be dangerous (CVE-2008-5353)

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (From source code to execution)
22/29

[Java] Serial killer

Source (java/Deserial.java)

import java.io.*;

class Friend { } // Unlikely to be dangerous!

class Deserial {

public static void main (String [] args)

throws FileNotFoundException , IOException ,

ClassNotFoundException {

FileInputStream fis = new FileInputStream (" friend ");

ObjectInputStream ois = new ObjectInputStream(fis);

Friend f=(Friend)ois.readObject ();

System.out.println (" Hello world ");

}

}

At runtime, we may read Bad things happen! since the serialised file
contained an object of a different class. The cast might fail, but it might
be too late.

Not controlling which code is run may be dangerous (CVE-2008-5353)
Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (From source code to execution)

22/29

Some concerns about memory management

When dealing with interpreted languages and Garbage collectors

I what chmod -x does?

I can the memory pages be marked as non-executable?

I how can we really enforce W ∧ X ?

I what does a JIT compiler change?

I how can I be sure a data is not spread by a mark and copy strategy?

I can I have guarantees on a key lifetime?

I can I zeroise it in some way?

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Illustrations (From source code to execution)
23/29

Outline

1 Illustrations

2 About assurance

3 Lessons learned

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : About assurance 24/29

[Java] Clone Wars

The official Java specification about Object.clone()

The general intent is that, for any object x, the expression:
x.clone()!= x will be true, and that the expression:
x.clone().getClass()== x.getClass() will be true, but these are not
absolute requirements. While it is typically the case that:
x.clone().equals(x) will be true, this is not an absolute
requirement.

Serialisation specifications (writeObject and readObject functions) are also
worth reading

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : About assurance 25/29

[C] Specs and checks

In “The C programming language (Second edition)”, by B. W. Kernighan
& D. M. Ritchie

The direction of truncation for / and the sign of the result for %

are machine-dependent for negative operands, as is the action
taken on overflow or underflow.

How would you check that a compiler complies to this non-deterministic
specification?

Would your check reject a compiler changing its mind at each division,
which would lead to 1/-2==1/-2 being false. This is an instance of the
Refinement Paradox

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : About assurance 26/29

[C] Specs and checks

In “The C programming language (Second edition)”, by B. W. Kernighan
& D. M. Ritchie

The direction of truncation for / and the sign of the result for %

are machine-dependent for negative operands, as is the action
taken on overflow or underflow.

How would you check that a compiler complies to this non-deterministic
specification?

Would your check reject a compiler changing its mind at each division,
which would lead to 1/-2==1/-2 being false. This is an instance of the
Refinement Paradox

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : About assurance 26/29

Outline

1 Illustrations

2 About assurance

3 Lessons learned

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Lessons learned 27/29

Lessons learned

I Programming languages can impact software security

I There is room for improvement in them

I We could benefit from more research and tools

I Writing secure software requires a broad vision in many aspects of
computer science

I Teaching should take more those aspects into account

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Lessons learned 28/29

Questions?

Thank you for your attention

olivier.levillain@ssi.gouv.fr

Jaeger, Levillain & Chifflier, HIS 2014 Mind your Language(s)! : Lessons learned 29/29

	Illustrations
	Encapsulation
	Types, casts and overloading
	Side effects
	No comments
	From source code to execution

	About assurance
	Lessons learned

