
Format Oracles on OpenPGP

Format Oracles on OpenPGP
F. Maury J.-R. Reinhard O. Levillain H. Gilbert

ANSSI, France

CT-RSA
April 22, 2015

Maury et al. | ANSSI | CT-RSA 2015 1 / 19

Format Oracles on OpenPGP | Introduction

Contribution

We identify new format oracles on OpenPGP implementations of
symmetrically (authenticated and) encrypted data
We study the number of oracle requests necessary to recover a
plaintext

Format oracle Requests per byte Affected implementation
Invalid packet tag 2 GnuPG

Double literal 26 GnuPG
MDC packet header 28 GnuPG, End-to-End

Maury et al. | ANSSI | CT-RSA 2015 2 / 19

Format Oracles on OpenPGP | Introduction

Padding Oracles

An encryption scheme is modeled by two (inverse processes)

E : P,K → C
D : C ,K → P (or ⊥, in authenticated encryption)

Issue:
Before encryption, the plaintext is usually prepared following a specific
format, e.g., a padding is applied
After decryption, this format has to be removed. This process may
raise errors if the format is not followed

M C

C̃M̃

format E

Dunformat

P

P̃

error

The presence/absence of error
leaks information on the result
of decryption
Using malleability of D, this
leakage can be aggregated to
decipher a target ciphertext

Maury et al. | ANSSI | CT-RSA 2015 3 / 19

Format Oracles on OpenPGP | Introduction

Padding/Format Oracles Attacks

This principle can be used to mount chosen ciphertext attacks
enabling to decipher a target ciphertext

C∗ = EK (P∗)

adversary

purpose: recover P∗

decryption process for DK

chosen variants of C∗

derives P∗

computes Pi = DK (Ci)

information about Pi is leaked
(error message, timing info)

Ci

OK or KO

Previous results
Bleichenbacher on RSA-PKCS#1v1.5, in SSL/TLS [Bl98]
Vaudenay on CBC mode used with specific padding schemes, in SSL or
IPsec [Va02]
Kĺıma and Rosa noted that the format has not to be restricted to
cryptographic padding, but may be applicative [KR03]

Maury et al. | ANSSI | CT-RSA 2015 4 / 19

Format Oracles on OpenPGP | OpenPGP

OpenPGP

Maury et al. | ANSSI | CT-RSA 2015 5 / 19

Format Oracles on OpenPGP | OpenPGP

OpenPGP

Pretty Good Privacy: published by P. Zimmermann in 1991
Application enabling to protect

Confidentiality e.g. of emails, through hybrid encryption
Authenticity, through signature

Standardized by IETF from 1997: OpenPGP message format
RFC 2440, november 1998
Updated by RFC 4880, november 2007

Main free implementation of the standard: GnuPG
Renewed interest following the Snowden revelations

Increase in the number of monthly registered public keys
Multiple promotional campaigns

Number of keys registered (by month)

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

GnuPG

Snowden

Promotion of GnuPG by FSF Europe

Maury et al. | ANSSI | CT-RSA 2015 6 / 19

Format Oracles on OpenPGP | OpenPGP

OpenPGP

Pretty Good Privacy: published by P. Zimmermann in 1991
Application enabling to protect

Confidentiality e.g. of emails, through hybrid encryption
Authenticity, through signature

Standardized by IETF from 1997: OpenPGP message format
RFC 2440, november 1998
Updated by RFC 4880, november 2007

Main free implementation of the standard: GnuPG
Renewed interest following the Snowden revelations

Increase in the number of monthly registered public keys
Multiple promotional campaigns

Number of keys registered (by month)

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

GnuPG

Snowden

Promotion of GnuPG by FSF Europe

Maury et al. | ANSSI | CT-RSA 2015 6 / 19

Format Oracles on OpenPGP | OpenPGP

OpenPGP

Pretty Good Privacy: published by P. Zimmermann in 1991
Application enabling to protect

Confidentiality e.g. of emails, through hybrid encryption
Authenticity, through signature

Standardized by IETF from 1997: OpenPGP message format
RFC 2440, november 1998
Updated by RFC 4880, november 2007

Main free implementation of the standard: GnuPG
Renewed interest following the Snowden revelations

Increase in the number of monthly registered public keys
Multiple promotional campaigns

Number of keys registered (by month)

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

GnuPG

Snowden

Promotion of GnuPG by FSF Europe

Maury et al. | ANSSI | CT-RSA 2015 6 / 19

Format Oracles on OpenPGP | OpenPGP

OpenPGP

Pretty Good Privacy: published by P. Zimmermann in 1991
Application enabling to protect

Confidentiality e.g. of emails, through hybrid encryption
Authenticity, through signature

Standardized by IETF from 1997: OpenPGP message format
RFC 2440, november 1998
Updated by RFC 4880, november 2007

Main free implementation of the standard: GnuPG
Renewed interest following the Snowden revelations

Increase in the number of monthly registered public keys
Multiple promotional campaigns

Number of keys registered (by month)

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

GnuPG

Snowden

Promotion of GnuPG by FSF Europe

Maury et al. | ANSSI | CT-RSA 2015 6 / 19

Format Oracles on OpenPGP | OpenPGP

OpenPGP Encryption Mode

Symmetric encryption is done in OpenPGP with CFB mode

CFB is used with an all zero IV, and is made non-deterministic by
prepending a random block to the plaintext
The first 2 bytes of the initial random block are repeated

This provides a quick consistency check at the beginning of decryption,
useful for password based encryption
This check has been used by [MZ05] to decipher 2 bytes per block with
an oracle attack

No padding, truncation of the keystream
Authenticated encryption uses an ad-hoc mode

Security?

Maury et al. | ANSSI | CT-RSA 2015 7 / 19

Format Oracles on OpenPGP | OpenPGP

OpenPGP Message Format

Packet Structure
T L V

Encrypted Packet (with Integrity Protection)

plaintext packet(s)$ $ MDC packet0xD3 0x14 Digest

Encryption

SHA-1

T L encrypted data C

K

Maury et al. | ANSSI | CT-RSA 2015 8 / 19

Format Oracles on OpenPGP | Oracles

Oracles

Maury et al. | ANSSI | CT-RSA 2015 9 / 19

Format Oracles on OpenPGP | Oracles

Format Oracles in OpenPGP Implementations
We investigated implementations that are (or can be seen) as libraries,
to use to develop higher-level applications relying on OpenPGP

Application OpenPGP library

We expect these implementations to act as cryptographic back ends
for the front end applications:

Perform all cryptographic operations
As a consequence, be the only part where keys are manipulated

Issue: The interaction between application and library often goes
beyond the ideal model of encryption schemes

Error messages are output (or logged)
The API of the library does not state whether these errors are sensitive
There is a risk that the front end may leak them

Result: Identification of 3 types of leakage, potential oracles (over 50
distinct oracles)

Investigated implementations
GnuPG, originally an application, but can be used as a
library through scripting, even produces status messages for
the calling application for such cases.
End-to-End, Google OpenPGP implementation in JavaScript
OpenPGP.js, another library developed in JavaScript

Maury et al. | ANSSI | CT-RSA 2015 10 / 19

Format Oracles on OpenPGP | Oracles

Format Oracles in OpenPGP Implementations
We investigated implementations that are (or can be seen) as libraries,
to use to develop higher-level applications relying on OpenPGP

Application OpenPGP library

We expect these implementations to act as cryptographic back ends
for the front end applications:

Perform all cryptographic operations
As a consequence, be the only part where keys are manipulated

Issue: The interaction between application and library often goes
beyond the ideal model of encryption schemes

Error messages are output (or logged)
The API of the library does not state whether these errors are sensitive
There is a risk that the front end may leak them

Result: Identification of 3 types of leakage, potential oracles (over 50
distinct oracles)

Investigated implementations
GnuPG, originally an application, but can be used as a
library through scripting, even produces status messages for
the calling application for such cases.
End-to-End, Google OpenPGP implementation in JavaScript
OpenPGP.js, another library developed in JavaScript

Maury et al. | ANSSI | CT-RSA 2015 10 / 19

Format Oracles on OpenPGP | Oracles

Format Oracles in OpenPGP Implementations
We investigated implementations that are (or can be seen) as libraries,
to use to develop higher-level applications relying on OpenPGP

Application OpenPGP library

We expect these implementations to act as cryptographic back ends
for the front end applications:

Perform all cryptographic operations
As a consequence, be the only part where keys are manipulated

Issue: The interaction between application and library often goes
beyond the ideal model of encryption schemes

Error messages are output (or logged)
The API of the library does not state whether these errors are sensitive
There is a risk that the front end may leak them

Result: Identification of 3 types of leakage, potential oracles (over 50
distinct oracles)

Investigated implementations
GnuPG, originally an application, but can be used as a
library through scripting, even produces status messages for
the calling application for such cases.
End-to-End, Google OpenPGP implementation in JavaScript
OpenPGP.js, another library developed in JavaScript

Maury et al. | ANSSI | CT-RSA 2015 10 / 19

Format Oracles on OpenPGP | Oracles

MDC Packet Header Oracle

For integrity-protected encrypted packets, the last 22 bytes of the
decrypted ciphertext form a Modification Detection Code packet

0xD3 0x14 20-byte SHA-1 Digest

GnuPG and End-to-End enforced this format by specifically checking
for the two byte values 0xD314 at position 22 and 21 from the end of
the decrypted ciphertext, and returning specific error messages in case
of mismatch
Using this leakage and CFB malleability, it is possible to recover any
two bytes of plaintext by performing 216 oracle queries

Maury et al. | ANSSI | CT-RSA 2015 11 / 19

Format Oracles on OpenPGP | Oracles

MDC Packet Header Oracle Attack
P∗i = C∗i ⊕ EK (C∗i−1), recover P∗i ⇔ recover EK (C∗i−1)
Recovering the last 2 bytes of EK (C∗i−1)

C∗i−1

0x00
· · ·

0x00
a b

n − 2 1 1
0x00
· · ·

0x00

20

EK EK . . .

⊕ ⊕ ⊕

∗ *
α
⊕
a

β
⊕
b

∗

∗||α||β

decryption= 0xD314?

MDC packet
For all possible byte pairs (a, b), build and submit ciphertext Ca,b, with
a and b located at the position of the MDC packet header
From the only value that does not raise a MDC format error, deduce 2
bytes of EK (C∗

i)
Complexity: at most 216 requests

Maury et al. | ANSSI | CT-RSA 2015 12 / 19

Format Oracles on OpenPGP | Oracles

MDC Packet Header Oracle Attack

Additional bytes of EK (C∗i−1) can be recovered for 28 requests per
byte
Idea: tweak the ciphertexts to ensure one of the 2 byte conditions

C∗i−1

0x00
· · ·

0x00
a

β
⊕

0x14

0x00
· · ·

0x00

u − 1 1 1 20
0x00
· · ·

0x00

EK EK . . .

⊕ ⊕ ⊕

∗ *
α
⊕
a

0x14 * ∗

decryption= 0xD3?

MDC packet

It is possible to avoid the 216 initial search by using more advanced
techniques
Final complexity: for messages over 4kB, 28 requests per byte detail

Maury et al. | ANSSI | CT-RSA 2015 13 / 19

Format Oracles on OpenPGP | Oracles

Invalid Identifier Oracles and Double Literal Oracle

After decryption, the plaintext is an OpenPGP message, and is parsed
by the OpenPGP implementation
During this parsing, errors may be encountered, for example:

An identifier value (tag, algorithm identifier, ...) is invalid
There are two literal packets

All the libraries raise some sort of error in one case or another
For example, GnuPG emits a status message when confronted with two
consecutive literal packets.

Using a tag oracle, it is possible to recover an arbitrary byte for 28

requests
Idea: submit ciphertexts that decrypt into 2 consecutive packets, with
the tag of the second packet located at the target byte position

Maury et al. | ANSSI | CT-RSA 2015 14 / 19

Format Oracles on OpenPGP | Oracles

Impact
Downgrade attacks

CFB mode is used in all the encryption contexts
A same key can be reused independently of the context
It is possible to decrypt any type of OpenPGP encrypted data with
any OpenPGP format oracle

Application
Usual application: email protection

Disconnected mode: difficult to get error feedback
Key unlocking: user interaction may be necessary

However,
OpenPGP is used in a lot of contexts, e.g. chat
The use of OpenPGP MUA proxies is considered, which might
introduce unattended decryption oracles, with a feedback to the
attacker

Maury et al. | ANSSI | CT-RSA 2015 15 / 19

Format Oracles on OpenPGP | Conclusion

Conclusion

Maury et al. | ANSSI | CT-RSA 2015 16 / 19

Format Oracles on OpenPGP | Conclusion

Disclosure

We informed the affected libraries developers on our results early on
GnuPG and End-to-End patched the MDC packet header oracle
Varying stance relatively to the other oracles:

End-to-End and OpenPGP.js propose a high-level API, whose errors are
sanitized
GnuPG considers it is the responsibility of front end developers not to
mishandle the errors. They documented the sensitivity of these
messages

Maury et al. | ANSSI | CT-RSA 2015 17 / 19

Format Oracles on OpenPGP | Conclusion

How To Prevent Format Oracles?

After more than 15 years of format oracles, it is still possible to
uncover such “flaws” in major cryptographic implementations
Solution: authenticated encryption

Mandating authenticated encryption is a systematic way to avoid
format oracles

Warning: implementation robustness
As illustrated by the MDC packet header oracle, use of authenticated
encryption is not sufficient
Implementations have to perform decryption steps in the right order
Counter example: GnuPG implementation

Adopt Decrypt-Verify-Then-Release, requires buffered decryption
Intermediate integrity tags if buffered decryption is not acceptable

Decrypt

Process

Check Format

Check Integrity ⊥

Maury et al. | ANSSI | CT-RSA 2015 18 / 19

Format Oracles on OpenPGP | Conclusion

How To Prevent Format Oracles?

After more than 15 years of format oracles, it is still possible to
uncover such “flaws” in major cryptographic implementations
Solution: authenticated encryption

Mandating authenticated encryption is a systematic way to avoid
format oracles

Warning: implementation robustness
As illustrated by the MDC packet header oracle, use of authenticated
encryption is not sufficient
Implementations have to perform decryption steps in the right order
Counter example: GnuPG implementation

Adopt Decrypt-Verify-Then-Release, requires buffered decryption
Intermediate integrity tags if buffered decryption is not acceptable

GnuPG implementation

Decrypt

Process

Check Format

Check Integrity ⊥

Maury et al. | ANSSI | CT-RSA 2015 18 / 19

Format Oracles on OpenPGP | Conclusion

How To Prevent Format Oracles?

After more than 15 years of format oracles, it is still possible to
uncover such “flaws” in major cryptographic implementations
Solution: authenticated encryption

Mandating authenticated encryption is a systematic way to avoid
format oracles

Warning: implementation robustness
As illustrated by the MDC packet header oracle, use of authenticated
encryption is not sufficient
Implementations have to perform decryption steps in the right order
Counter example: GnuPG implementation

Adopt Decrypt-Verify-Then-Release, requires buffered decryption
Intermediate integrity tags if buffered decryption is not acceptable

Decrypt-Verify-Then-Release

Decrypt

Process

Check Format

Check Integrity ⊥

Maury et al. | ANSSI | CT-RSA 2015 18 / 19

Format Oracles on OpenPGP | Conclusion

How To Prevent Format Oracles?

After more than 15 years of format oracles, it is still possible to
uncover such “flaws” in major cryptographic implementations
Solution: authenticated encryption

Mandating authenticated encryption is a systematic way to avoid
format oracles

Warning: implementation robustness
As illustrated by the MDC packet header oracle, use of authenticated
encryption is not sufficient
Implementations have to perform decryption steps in the right order
Counter example: GnuPG implementation
Adopt Decrypt-Verify-Then-Release, requires buffered decryption
Intermediate integrity tags if buffered decryption is not acceptable

Decrypt

Process

Check Format

Check Integrity ⊥

Maury et al. | ANSSI | CT-RSA 2015 18 / 19

Format Oracles on OpenPGP | Conclusion

Thank you for your attention

Maury et al. | ANSSI | CT-RSA 2015 19 / 19

Format Oracles on OpenPGP | Conclusion

MDC Packet Header Attack Complexity

5 10 15 20 25 30

2
4
6
8

Length of ciphertext (kB)

N
um

be
r

of
re

qu
es

ts
(1

06)

Number of requests necessary to decipher a ciphertext
For short messages, the advanced strategy does not gain anything
For messages of intermediate length, it is useful, but it entails a fixed
cost
For long messages, it can be applied for free

back

Maury et al. | ANSSI | CT-RSA 2015 20 / 19

