
1

Parsifal: writing efficient and robust binary parsers,
quickly

Olivier Levillain∗†, Hervé Debar†, Bejamin Morin∗

Parsers are pervasive software basic blocks: as soon as
a program needs to communicate with another program or
to read a file, a parser is involved. However, writing robust
parsers can be difficult, as is revealed by the amount of bugs
and vulnerabilities related to programming errors in parsers.
In particular, network analysis tools can be very complex
to implement: for example, the Wireshark project regularly
publishes security patches on its various dissectors1.

As security researchers, we need robust tools on which we
can depend. The starting point of Parsifal was a study of
large amounts of SSL data [1]. The data collected contained
legitimate SSL [2] messages, as well as invalid messages
and other protocols (HTTP, SSH). To face this challenge and
extract relevant information, we wrote several parsers, using
different languages, which resulted in Parsifal, an OCaml-
based parsing engine. Writing parsers and analysing data not
only helped us better understand SSL/TLS, but also X.509 [3]
and BGP/MRT [4], [5]. More recently, we have started study-
ing Kerberos messages.

The contribution of Parsifal to security is twofold. First we
provide sound tools to analyse complex file formats or network
protocols. Secondly we implement robust detection/sanitiza-
tion systems. The goal of this tutorial is to present Parsifal
and to use it to write a network protocol parser (DNS) and a
file format parser (PNG). The PNG parser will then be used
to build a PNG sanitizer. Alternatively, an X.509 certificate
signing request validator can be implemented.

Olivier Levillain is head of the Network and Protocols
Laboratory at the French Network and Information Secu-
rity Agency (ANSSI). His current research interests are web
browser security, network protocols (SSL/TLS in particular)
and the (in)adequation of programming languages to security
goals. He is currently a PhD student under Pr. Hervé Debar
and Dr. Benjamin Morin’s advisory.

I. PROJECT HISTORY

In 2010, the Electronic Frontier Foundation scanned the
Internet to find out how servers answered on the 443/TCP port
worldwide [6], [7], [8]. We studied this significant amount of
data with custom tools, to gain thorough insight of the data
collected [1].

Our first attempt to write an SSL parser was with the Python
language; it was quickly written and allowed us to extract some
information. However, this implementation was unacceptedly

∗ ANSSI, first.last@ssi.gouv.fr
† Télécom Sud Paris, first.last@telecom-sudparis.eu
1Since the beginning of the 2013 year, 29 CVE have been published on

Wireshark.

slow. The second parser was in C++, using templates and
object-oriented programming; its goal was to be flexible and
fast. Yet, the code was hard to debug, and contained too many
lines.

So a new version was written, in OCaml: it used a DSL
(Domain Specific Language) close to Python to describe the
structures to be studied. This third parser was as fast as the
previous one, less error-prone, but still needed a lot of lines
to code simple features. That is why we decided to use a
preprocessor to do most of the work, letting the programmer
deal only with what’s important: structure description. This
last implementation, Parsifal, has all the properties expected:
efficient and robust parsers, written using few lines of code.

Our work originally covered X.509 certificates and SSL/TLS
messages, but we soon tried Parsifal on other network proto-
cols (BGP/MRT, DNS, TCP/IP stack, Kerberos) and on some
file formats (TAR, PE, PCAP, PNG). Some of these parsers
are still at an early stage, but one of the strength of Parsifal
is that it is easy to describe part of a protocol, and focus only
on what really needs to be dissected.

II. PARSIFAL PRINCIPLE: PTYPES

Parsifal basically allows one to use PTypes, which are
OCaml types augmented by the presence of some manipulation
functions: a PType t is composed of:
• the corresponding OCaml type t;
• a parse_t function, to transform a binary representa-

tion of an object into the type t;
• a dump_t function, that does the reverse operation, that

is dumping a binary representation out of a constructed
type t;

• a value_of_t function, to translate a constructed type
t into an abstract representation, which can then be
printed, exported as JSON, or analysed using generic
functions.

PTypes are usually built using new keywords: enum,
struct, union, etc. However, when dealing with unsup-
ported cases, it is also possible to add custom PTypes, by
writing directly the t type and the corresponding functions. A
lot of basic PTypes are already present in the core library.

A. Examples of construction
Among the TLS messages, alerts are used to signal a prob-

lem during the session. Such messages are simply composed of
an alert level (one byte with two possible values) and an alert
type (another byte). An extract of the specification is given in
figure 1. It is possible to describe such messages in Parsifal

2

with the code given in figure 2. As a result, the preprocessor
will generate three OCaml types, and some functions, as
presented in figure 3.

The constructions available in Parsifal are enumerations
(enum keyword), records (struct), choices allowing for
types depending on a parameter (union), ASN.1 DER struc-
tures and choices (asn1_struct and asn1_union) and
aliases (alias and asn1_alias).

B. Examples of base PTypes

Parsifal already understands some basic types: integers,
string, IPv4/IPv6 addresses, lists, arrays, magic numbers, and
ASN.1 basic objects.

Moreover, Parsifal provides an abstraction, the containers,
allowing to wrap a PType using some processing. For example,
base64_container and hex_container allow to work
with encoded types transparently; deflate_container
and zlib_container uncompress the output when parsing
and compress when dumping. Finally, pkcs1_container
are an elegant way to decrypt the content of a PKCS#1 value
and read the enclosed type when given the corresponding key
during parsing type2.

The idea of the core library is to provide most of the basic
types and transformations used in protocols and file formats.
One of the advantages of Parsifal is that it is easy to partially
implement a protocol to only interpret the cases of interest. It
also allows for a incremental description of a format.

As our initial goal was to handle a lot of data, including
corrupted messages or data not conforming to the specification,
it is possible to implement either strict parsers or flexible ones.
This was useful when dissecting X.509 corrupted fields: an
error deep in the certificate should not necessarily invalidate
the whole certificate nor the TLS message containing it.

III. RELATED WORK

Parsifal may seem similar to two existing Python projects:
scapy [9], a toolbox to parse and forge network packets
and hachoir [10], a generic framework for binary file
manipulation library. However, as an OCaml development,
Parsifal allows for better perfomance when compiled to native
binaries. In our experience, it is as efficient as corresponding
C implementations3. What’s more, OCaml is a well-defined,
sound language which brings some safety guarantees regarding
memory management that C or Python do not.

Other preprocessors and libraries exist in the OCaml envi-
ronment, but they do not offer a comprehensive framework to
describe complex structures as Parsifal does. For example, the
bitstring [11] project adds pattern matching on bitsrings,
which is only a part of the types handled by our tool.

2This proved to be useful to process smoothly Kerberos PKINIT messages.
3For example, the time needed to parse certificates is comparable with the

openssl x509 command.

enum { warning(1), fatal(2), (255) } AlertLevel;

enum {
close_notify(0),
...
unsupported_extension(110),
(255)

} AlertDescription;

struct {
AlertLevel level;
AlertDescription description;

} Alert;

Fig. 1. Specification of tls_alert messages (from RFC 5246 [2]).

enum t l s _ a l e r t _ l e v e l (8 , UnknownVal AL_Unknown) =
| 1 −> AL_Warning , " Warning "
| 2 −> AL_Fatal , " F a t a l "

enum t l s _ a l e r t _ t y p e (8 , UnknownVal AT_Unknown) =
| 0 −> AT_CloseNot i fy , " C l o s e N o t i f y "
. . .
| 115 −> AT_UnknownPSKIdentity , " UnknownPSKIdent i ty "

s t r u c t t l s _ a l e r t = {
a l e r t _ l e v e l : t l s _ a l e r t _ l e v e l ;
a l e r t _ t y p e : t l s _ a l e r t _ t y p e

}

Fig. 2. Parsifal description of tls_alert messages.

(∗ t l s _ a l e r t _ l e v e l ∗)

type t l s _ a l e r t _ l e v e l =
AL_Warning

| AL_Fata l
| AL_Unknown of i n t

(∗ C o n v e r s i o n f u n c t i o n s t o / from i n t / s t r i n g ∗)
v a l i n t _ o f _ t l s _ a l e r t _ l e v e l : t l s _ a l e r t _ l e v e l −> i n t
v a l s t r i n g _ o f _ t l s _ a l e r t _ l e v e l : t l s _ a l e r t _ l e v e l −> s t r i n g
v a l t l s _ a l e r t _ l e v e l _ o f _ i n t : i n t −> t l s _ a l e r t _ l e v e l
v a l t l s _ a l e r t _ l e v e l _ o f _ s t r i n g : s t r i n g −> t l s _ a l e r t _ l e v e l

(∗ p a r s e / dump / v a l u e _ o f f u n c t i o n s ∗)
v a l p a r s e _ t l s _ a l e r t _ l e v e l : i n p u t −> t l s _ a l e r t _ l e v e l
v a l d u m p _ t l s _ a l e r t _ l e v e l : o u t p u t −> t l s _ a l e r t _ l e v e l −> u n i t
v a l v a l u e _ o f _ t l s _ a l e r t _ l e v e l : t l s _ a l e r t _ l e v e l −> va lue

(∗ t l s _ a l e r t _ t y p e ∗)

type t l s _ a l e r t _ t y p e =
AT_CloseNot i fy

. . .
| AT_Unknown of i n t

(∗ . . . 7 f u n c t i o n s , s i m i l a r t o t h o s e r e l a t i v e ∗)
(∗ t o t l s _ a l e r t _ l e v e l . . . ∗)

(∗ t l s _ a l e r t ∗)

type t l s _ a l e r t = {
a l e r t _ l e v e l : t l s _ a l e r t _ l e v e l ;
a l e r t _ t y p e : t l s _ a l e r t _ t y p e ;

}
v a l p a r s e _ t l s _ a l e r t : i n p u t −> t l s _ a l e r t
v a l d u m p _ t l s _ a l e r t : o u t p u t −> t l s _ a l e r t −> u n i t
v a l v a l u e _ o f _ t l s _ a l e r t : t l s _ a l e r t −> va lue

Fig. 3. Corresponding OCaml code generated (extracts of the interface).

3

IV. TUTORIAL GOALS AND OUTLINE

A version of this tutorial has already been taught to teach
several co-workers how to use Parsifal. The overall tutorial
was given over a 3-hour session. All the material (this short
paper, the slides and the code snippets) will be available on
the GitHub repository.

The tutorial is intended for developpers and researchers who
need to manipulate complex binary file formats or network
protocols. The audience would need a basic background in
functional programming (OCaml language preferably).

There are three main goals for this tutorial:
• learn to use basic Parsifal constructions;
• write a simple DNS client;
• code a PNG sanitizer

Depending on the audience’s interests, the DNS or PNG
implementation could be replaced by an X.509 Certificate
Signing Request validator.

A. Parsifal presentation
As was done in the first part of this document, the tutorial

begins with a brief history of the project, and the motivation
for writing robust and efficient parsers.

Then, the principle behind Parsifal are presented: the PTypes
and the methods to generate them automatically using a
preprocessor. This part can be illustrated by several examples
of constructions: how to write them and what kind of code is
generated.

B. Downloading and installing Parsifal
After this short introduction, the tutorial consists of down-

loading Parsifal source code from the public repository on
GitHub (https://github.com/ANSSI-FR/parsifal), installing it
and using it to write parsers step-by-step.

Members of the audience interested in manipulating on their
computers would have to install the OCaml languages and the
libraries on which Parsifal depends.

C. DNS step-by-step
The first parser proposed for the tutorial is DNS, which is

a rather simple protocol, but contains some subtleties. That is
why it is a good candidate to begin using Parsifal.

After presenting DNS message formats, the implementation
goes as follows:

• description of DNS enumerations (record types and
classes);

• first implementation of labels and domains using struc-
tures;

• description of more structures (question, rr and the
overall dns_message type);

- at this point, it is possible to parse and print
example requests and responses;

• progressive specification of the ressource records (A,
CNAME, MX) using a union;

• custom rewrite of labels and domains to handle the
compression;

• implementation of the UDP connexion
- at this point, it is possible to have a minimalistic

DNS client.

D. PNG step-by-step
Another example can be written to parse PNG files. The

different steps of the implementation would be:
• description of the outter structure of the image file

(essentially a list of chunks);
- at this point, it is possible to implement a tool

printing the types of the chunks present in a given
file;

- it is also possible to write a basic PNG filter,
rewriting the file without the comment chunks
(tEXt for example);

• rewrite of the chunk container to automatically generate
the length and the CRC when dumping the chunk;

• as for DNS resource records, it is possible to use a
union to progressively describe the different chunk types,
starting with the mandatory ones (IHDR, PLTE, IDAT
and IEND);

- at this point, it is possible to write a simple
PNG sanitizer that combines all IDAT chunks
into one, and rewrites the image file uncom-
pressed. This way, the compression is handled by
zlib_container, a pure OCaml robust imple-
mentation, and not by the end application, which
may embed an out-of-date and flawed zlib.

E. X.509 CSR validation
Another format that is worth implementing is X.509 Cer-

tificate Signing Request. In 2009, Moxie Marlinspike showed
how to get a signed certificate for the wrong domain by
sending a subject containing null characters [12]. In all the
cases, it might be useful to constrain the CSR before it hits
the certification authority: remove useless attributes, check the
signature before-hand, clean up the subject to follow a given
policy. Here is how it can be done using Parsifal:
• description of the ASN.1 structures corresponding to

CSRs;
- at this point, it is possible to implement a tool

printing CSRs;
• filter out attributes;
• add a trivial policy on subjects (only one CN field, no

null characters, etc.);
• check the signature and the size of the key;

- at this point, it is possible to write a simple X.509
CSR validator, that can be used as a gate keeper
to validate requests.

V. CONCLUSION

For our needs, we wrote several parsers to analyse a lot
of SSL/TLS data. As the collected messages were sometimes
corrupted or invalid, standard tools did not allow for sound and

4

robust dissection. Parsifal, an OCaml-based parsing engine,
allowed us to gain insight into several important protocols.
Parsifal also proved to be versatile and might be useful to
the security community to write efficient and robust binary
dissectors.

ACKNOWLEDGMENT

The work in this paper has been partially sponsored by the
EC 7th Framework Programme as part of the ICT Vis-Sense
project (grant no. 257497). The authors would like to thank
the Applied and Fundamental Research Division of the French
Network and Information Security Agency (ANSSI) for their
comments and suggestions.

REFERENCES

[1] Olivier Levillain, Arnaud Ébalard, Hervé Debar, and Benjamin Morin.
One Year of SSL Measurement. In ACSAC, 2012.

[2] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated
by RFCs 5746, 5878, 6176.

[3] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile. RFC 5280 (Proposed Standard), May
2008.

[4] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4).
RFC 4271 (Draft Standard), January 2006. Updated by RFC 6286.

[5] L. Blunk, M. Karir, and C. Labovitz. Multi-Threaded Routing Toolkit
(MRT) Routing Information Export Format. RFC 6396 (Proposed
Standard), October 2011.

[6] Electronic Frontier Foundation. The EFF SSL Observatory. https://
www.eff.org/observatory, 2010-2012.

[7] P. Eckersley and J. Burns. An Observatory for the SSLiverse, Talk at
Defcon 18, 2010.

[8] P. Eckersley and J. Burns. Is the SSLiverse a safe place?, Talk at 27C3,
2010.

[9] P. Biondi and the Scapy community. Scapy. http://www.secdev.org/
projects/scapy/, 2003-2012.

[10] V. Stinner. Hachoir. https://bitbucket.org/haypo/hachoir/wiki/Home,
2009-2012.

[11] R. Jones. bitstring. http://code.google.com/p/bitstring/, 2003-2012.
[12] Moxie Marlinspike. More Tricks For Defeating SSL In Practice, 2009.

