One Year of SSL Internet Measurement ACSAC 2012

Olivier Levillain, Arnaud Ébalard, Benjamin Morin and Hervé Debar ANSSI / Télécom SudParis

December 5th 2012

Outline

- 1 SSL/TLS: a brief tour
- 2 Methodology of the measures
- 3 Analysis methodology
- 4 Some results
- 5 Conclusion and perspectives

Outline

- 1 SSL/TLS: a brief tour
- 2 Methodology of the measures
- 3 Analysis methodology
- 4 Some results
- 5 Conclusion and perspectives

SSL/TLS: a key component of internet security

Originally, SSL/TLS is a transport layer between TCP and HTTP

HTTP
TCP

HTTP
SSL
TCP

SSL/TLS: a key component of internet security

Originally, SSL/TLS is a transport layer between TCP and HTTP

HTTP
SSL
TCP

- Security properties
 - Server authentication (or mutual authentification)
 - Data confidentiality
 - Data integrity

SSL/TLS: a key component of internet security

Originally, SSL/TLS is a transport layer between TCP and HTTP

- Security properties
 - Server authentication (or mutual authentification)
 - Data confidentiality
 - Data integrity
- Today, SSL/TLS is everywhere
 - SMTPS, IMAPS, LDAPS...
 - Virtual Private Networks
 - EAP-TLS

A typical TLS connection

Protocol history

- SSLv2, published by Netscape (1995)
- SSLv3, a major update to overcome SSLv2 structural flaws (1996)
- TLSv1.0
 - essentially SSLv3 with editorial changes (2001)
 - from this point, the protocol has been maintained by IETF
- TLSv1.1, which patches a cryptographic flaw (2006)
- TLSv1.2, which brings a little more flexibility (2008)

- Protocol conceptual flaws
 - no handshake integrity (SSLv2)
 - insecure renegotiation (all versions before 2010)
 - information leak through compression (CRIME)

- Protocol conceptual flaws
 - no handshake integrity (SSLv2)
 - insecure renegotiation (all versions before 2010)
 - information leak through compression (CRIME)
- Cryptographic weaknesses
 - short keys
 - PKCS#1 v1.5 implementation
 - Mac-Then-Encrypt implementation
 - Implicit IV in CBC mode (BEAST)

- Protocol conceptual flaws
 - no handshake integrity (SSLv2)
 - insecure renegotiation (all versions before 2010)
 - information leak through compression (CRIME)
- Cryptographic weaknesses
 - short keys
 - PKCS#1 v1.5 implementation
 - Mac-Then-Encrypt implementation
 - Implicit IV in CBC mode (BEAST)
- Certificate problems
 - generation : lack of entropy
 - validation : null characters, wrongly used APIs
 - revocation : Comodo, Diginotar

- Protocol conceptual flaws
 - no handshake integrity (SSLv2)
 - insecure renegotiation (all versions before 2010)
 - information leak through compression (CRIME)
- Cryptographic weaknesses
 - short keys
 - PKCS#1 v1.5 implementation
 - Mac-Then-Encrypt implementation
 - Implicit IV in CBC mode (BEAST)
- Certificate problems
 - generation : lack of entropy
 - validation : null characters, wrongly used APIs
 - revocation : Comodo, Diginotar

How to improve the quality of TLS connections?

Outline

- 1 SSL/TLS: a brief tour
- 2 Methodology of the measures
- 3 Analysis methodology
- 4 Some results
- 5 Conclusion and perspectives

■ Enumerate every routable IPv4 address to find open HTTPS ports

■ Enumerate every routable IPv4 address to find open HTTPS ports

■ Contact HTTPS hosts based on a list of DNS names

■ Enumerate every routable IPv4 address to find open HTTPS ports

Contact HTTPS hosts based on a list of DNS names

■ Collect real HTTPS traffic from consenting users

- Enumerate every routable IPv4 address to find open HTTPS ports
 - EFF

- Contact HTTPS hosts based on a list of DNS names
 - Qualys SSL Pulse
 - NetCraft
- Collect real HTTPS traffic from consenting users
 - Holz et al., The SSL Landscape A Thorough Analysis of the X.509 PKI Using Active and Passive Measurements (IMC '11)

- Enumerate every routable IPv4 address to find open HTTPS ports
 - EFF
 - our measures
- Contact HTTPS hosts based on a list of DNS names
 - Qualys SSL Pulse
 - NetCraft
- Collect real HTTPS traffic from consenting users
 - Holz et al., The SSL Landscape A Thorough Analysis of the X.509 PKI Using Active and Passive Measurements (IMC '11)

Our two-phase program

- Phase 1 : finding IPs with open TCP/443
 - 2 billion routable IPv4 addresses
 - randomisation of the set of addresses to contact
 - limited upstream rate to avoid links overloading
 - trade-off to get a time-coherent snapshot : 2 weeks, rate bounded at 100 kB/s

Our two-phase program

- Phase 1 : finding IPs with open TCP/443
 - 2 billion routable IPv4 addresses
 - randomisation of the set of addresses to contact
 - limited upstream rate to avoid links overloading
 - trade-off to get a time-coherent snapshot : 2 weeks, rate bounded at 100 kB/s
- Phase 2 : TLS session attempt
 - about 1 % of hosts have TCP/443 open
 - description of the message exchanged
 - ▶ we send a ClientHello (the stimu|us)
 - we gather the answer, at most until the ServerHelloDone
 - we send a TCP Reset

Description of the 10 campaigns

ld	Date	SSLv2	Max version	Ciphersuites	Extensions
NoExt1	2010/07	no	TLSv1.0	Firefox	None
EFF-1	2010/08	yes	TLSv1.0	SSLv2 + TLSv1	None
EFF-2	2010/12	yes	TLSv1.0	SSLv2 + TLSv1	None
NoExt2	2011/07	no	TLSv1.0	Firefox	None
DHE	2011/07	no	TLSv1.0	DHE Suites	None
FF	2011/07	no	TLSv1.0	Firefox	EC, Reneg, Ticket
EC	2011/07	no	TLSv1.0	EC Suites	EC
SSL2	2011/07	yes	SSLv2	SSLv2	None
SSL2+	2011/07	yes	TLSv1.0	SSLv2 + TLSv1	Reneg
TLS12	2011/07	no	TLSv1.2	Mostly TLSv1.2	EC, Reneg, Ticket

Those last 7 stimuli were sent in parallel to study in detail the server behaviour.

Global statistics

ld	IPs with Non-		TLS
	TCP/443	answers	answers
NoExt1	21,342,205	54 %	46 %
EFF-1	15,579,266	27 %	73 %
EFF-2	7,777,511	1 %	99 %
NoExt2	26,218,653	57 %	43 %
DHE	26,218,653	66 %	34 %
FF	26,218,653	57 %	43 %
EC	26,218,653	64 %	36 %
SSL2	26,218,653	81 %	19 %
SSL2+	26,218,653	57 %	43 %
TLS12	26,218,653	64 %	36 %

Outline

- 1 SSL/TLS: a brief tour
- 2 Methodology of the measures
- 3 Analysis methodology
- 4 Some results
- 5 Conclusion and perspectives

Subsets

For each campaign, we consider 3 subsets :

- TLS hosts
- Trusted hosts (using Firefox certificate store)
- EV hosts

Studied critera

- TLS parameters
 - protocol version chosen by the server
 - ciphersuite selected by the server
 - secure renegotiation support

Studied critera

- TLS parameters
 - protocol version chosen by the server
 - ciphersuite selected by the server
 - secure renegotiation support
- Quality of the certification chain
 - Certificate message analysis
 - key sizes
 - validity periods

Studied critera

- TLS parameters
 - protocol version chosen by the server
 - ciphersuite selected by the server
 - secure renegotiation support
- Quality of the certification chain
 - Certificate message analysis
 - key sizes
 - validity periods
- Server behaviour
 - version intolerance

 - ciphersuite intolerance

Outline

- 1 SSL/TLS: a brief tour
- 2 Methodology of the measures
- 3 Analysis methodology
- 4 Some results
- 5 Conclusion and perspectives

Protocol version

For a typical campaign (NoExt1, EFF1, EFF2, NoExt2, FF), the version chosen are stable in time :

TI	_S	Tru	sted	Е	V
TLS1	96 %	TLS1	99 %	TLS1	99 %
SSL3	4 %	SSL3	1 %	SSL3	1 %

Secure Renegotiation extension (RFC 5746)

- Only 3 stimuli proposed the extension
- All in 2011, so we can not observe a trend
- In the three cases, the proportion of servers accepting the extension is the same

TLS hosts	53 %
Trusted	65 %
EV	80 %

The Certificate message

The RFC indicates that

- all the certificates of the chain should be present
- in the order of the chain
- the root may be ommited

In practice, we saw four types of chains

- RFC-compliant
- Self-contained
- Transvalid
- Incomplete

Evolution of the types of the chains

	2010-07	2010-08	2010-12	2011-07
	R:60 %	R:61 %	R:59 %	R:54 %
TLS	S:9%	S:8%	S:10 %	S:10 %
	T:4%	T:3%	T:6%	T:6%
	I : 27 %	I : 28 %	I : 25 %	I:30 %
	R:69 %	R:71 %	R:67 %	R:62 %
Trusted	S:21 %	S:19 %	S:21 %	S:24 %
	T:10 %	T:10 %	T:12 %	T:14 %
EV	R:11 %	R : 13 %	R:16 %	R:12 %
	S:78 %	S:76 %	S:74 %	S:83 %
	T:11 %	T:11 %	T:10 %	T:5%

- RSA is by far the main signature algorithm used in certs
- Typical RSA key size was 1024 bits in 2010 but 2048 bits is now mandatory for EV certificates

- RSA is by far the main signature algorithm used in certs
- Typical RSA key size was 1024 bits in 2010 but 2048 bits is now mandatory for EV certificates
- but we saw 16384 bits or 384 bit keys in the measures
- 512 bit trusted certs still found in July 2011

- RSA is by far the main signature algorithm used in certs
- Typical RSA key size was 1024 bits in 2010 but 2048 bits is now mandatory for EV certificates
- but we saw 16384 bits or 384 bit keys in the measures
- 512 bit trusted certs still found in July 2011
- Typical Certificate message contains at most 3 certs

- RSA is by far the main signature algorithm used in certs
- Typical RSA key size was 1024 bits in 2010 but 2048 bits is now mandatory for EV certificates
- but we saw 16384 bits or 384 bit keys in the measures
- 512 bit trusted certs still found in July 2011
- Typical Certificate message contains at most 3 certs
- but one trusted host sent 150 certificates in 2010

- RSA is by far the main signature algorithm used in certs
- Typical RSA key size was 1024 bits in 2010 but 2048 bits is now mandatory for EV certificates
- but we saw 16384 bits or 384 bit keys in the measures
- 512 bit trusted certs still found in July 2011
- Typical Certificate message contains at most 3 certs
- but one trusted host sent 150 certificates in 2010
- Typical validity period is one or two years

- RSA is by far the main signature algorithm used in certs
- Typical RSA key size was 1024 bits in 2010 but 2048 bits is now mandatory for EV certificates
- but we saw 16384 bits or 384 bit keys in the measures
- 512 bit trusted certs still found in July 2011
- Typical Certificate message contains at most 3 certs
- but one trusted host sent 150 certificates in 2010
- Typical validity period is one or two years
- but some certs are valid until 9999
- and others never were (notBefore > notAfter)

Server behaviour

- We now consider the 7 stimuli sent in July 2011 essentially at the same time
- Based on the certificates returned, we are confident the hosts contacted were stable accross the 7 answers
- Redefine our subsets :
 - TLS hosts are hosts that spoke TLS at least once
 - Trusted hosts are hosts that returned a trusted chain at least once
 - Same thing for EV hosts

The DHE stimulus

- DHE stands for Diffie-Hellman Ephemeral
- DHE provides Perfect Forward Secrecy
- The DHE stimulus only proposed DHE ciphersuites

	TLS	Trusted	EV
Compatible Handshake	39 %	42 %	13 %
Alert	38 %	28 %	71 %
Intolerant servers	23 %	30 %	16 %
Non-TLS answer	22 %	30 %	16 %
Incompatible Handshake	1 %	0 %	0 %

The TLS12 stimulus

- The TLS12 stimulus proposed versions TLSv1.0 to TLSv1.2
- Servers can answer with TLSv1.0 if they don't know TLSv1.2 (and they should, because it is part of the negotiation)

	TLS	Trusted	EV
Compatible Handshake	76 %	74 %	86 %
Alert	7 %	5 %	2 %
Intolerant servers	17 %	21 %	12 %
Non-TLS answer	16 %	21 %	12 %
Incompatible Handshake	1 %	0 %	0 %

Outline

- 1 SSL/TLS: a brief tour
- 2 Methodology of the measures
- 3 Analysis methodology
- 4 Some results
- 5 Conclusion and perspectives

Conclusion

- Study of the IPv4 HTTPS landscape from July 2010 to July 2011
- Simultaneous stimuli in July 2011, allowing to observe the server behaviour (more complex as it seems, Google's False Start)
- Different subsets and different times to show some trends
- Studied criteria were not only about certificates
- Lots of surprising answers

Conclusion

- Study of the IPv4 HTTPS landscape from July 2010 to July 2011
- Simultaneous stimuli in July 2011, allowing to observe the server behaviour (more complex as it seems, Google's False Start)
- Different subsets and different times to show some trends
- Studied criteria were not only about certificates
- Lots of surprising answers
- EV is a certificate label and has a clear impact on RSA key sizes and certificate validity periods
- However, on all other criteria, EV hosts behave poorly (they are even worse than the global TLS statistics in some cases)
- Need for a label attesting the global quality of TLS connections

Future work

- More criteria to study
 - more TLS parameters (DH groups, revocation mechanisms, other extensions)
 - take HTTP parameters into account (mixed content)

Future work

- More criteria to study
 - more TLS parameters (DH groups, revocation mechanisms, other extensions)
 - take HTTP parameters into account (mixed content)
- New campaigns
 - use real navigation data
 - contact the HTTPS hosts identified and inspect them thoroughly

Questions?

This work has been partially sponsored by the EC 7th Framework Programme as part of the ICT Vis-Sense project (grant no. 257497)

Thank you for your attention

One Year of SSL Internet Measurement - December 5th 2012

