
GDB - Tutorial

c©Anurag (anurag@hbcse.tifr.res.in)

January 31, 2005

1 Starting and invoking gdb

1. Inserting debugging information inside the output executable files created
after compilation and to start debugging session.

$ gcc -o fact fact.c -g

$ gdb fact

2. Giving shell commands from within gdb

(gdb) shell clear

3. Set breakpoint at the function main()

(gdb) break main

4. Delete break point number 1

(gdb) delete 1

Note: Pressing enter with no command executes the previous command

2 Running and navigating in gdb

1. Run program to be debugged

(gdb) run

2. See where program stopped

(gdb) list

3. Execute next line of the program

(gdb) next (gdb) n

4. Step inside

(gdb) step

1



5. Print stack trace

(gdb) where

(gdb) frame 0

(gdb) frame 1

6. Return back from function

(gdb) return

7. Continue execution until the next break point.

(gdb) continue

3 Retrieving values of variables

1. Display the value of a variable ”i”

(gdb) display i

2. Set hardware/software watch point for variable ”i”

(gdb) watch i

3. Print the value of variable ”i”

(gdb) print i

4. Print the address of variable ”i”

(gdb) print &i

5. Reassign a value to n

(gdb) set variable n=6

(gdb) continue

6. Call fact() function with different parameters.

(gdb) call fact(4)

7. Display the data type of a variable:

(gdb) ptype i

(gdb) whatis i

4 Segmentation faults

1. Segmentation faults Here we compile and execute a program with results
in a segmentation fault. The snapshot of memory is saved in a file called
”core”

$ gcc -o demo demo.c -g

2



$ gdb demo core

(gdb) disassembly

note: sethi = an assembly instruction

Made with LATEX

3


